Liquid-phase synthesis of magnesium phosphates in the presence of gallic acid

Cover Page

Cite item

Full Text

Abstract

In aqueous solutions of magnesium chloride and sodium dihydrogen phosphate at Mg / P molar ratios of 1,0-1,5 and pH of 5-7 in the presence of gallic acid, crystalline hydrates of magnesium hydrophosphate (newberyte - MgHPO 4·3 H 2 O ) and orthophosphate ( Mg 3( PO 4)2·22 H 2 O ) were obtained, which after heating at 800°C transformed into pyrophosphates ( Mg 2 P 2 O 7). X-ray phase and thermal analysis methods, as well as infared spectroscopy, showed that the presence of an organic additive in the liquid-phase synthesis of magnesium phosphates does not lead to a noticeable change in the phase composition of the reaction products. It was revealed that gallic acid affects the formation of the structure of crystalline hydrates depending on the Mg / P molar ratio. It was found that with prolonged maturation of the sediments (over 6 months), the size of the unit cell of magnesium phosphates decreases. The obtained magnesium phosphate powders modified with gallic acid exhibit redox activity and are promising for use in biomaterials as resorbable components with antioxidant properties.

About the authors

Olga N. Musskaya

Institute of General and Inorganic Chemistry of the NAS of Belarus

Email: musskaja@igic.bas-net.by
Ph. D., Docent, Leading Researcher, Laboratory of Photochemistry and Electrochemistry

Valentina K. Krut'ko

Institute of General and Inorganic Chemistry of the NAS of Belarus

Ph. D., Docent, Head of the Laboratory of Photochemistry and Electrochemistry

Ilya E. Glazov

Institute of General and Inorganic Chemistry of the NAS of Belarus

Ph. D., Senior Researcher, Laboratory of Photochemistry and Electrochemistry

Eugene N. Krutsko

Institute of General and Inorganic Chemistry of the NAS of Belarus

Senior Researcher, Laboratory of Photochemistry and Electrochemistry

Anatoly I. Kulak

Institute of General and Inorganic Chemistry of the NAS of Belarus

Academician, Dr. Sc., Professor, Director of the Institute of General and Inorganic Chemistry of the NAS of Belarus

References

  1. Zhang, J. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties /j. Zhang, W. Liu, V. Schnitzler et al. // Acta Biomaterialia. - 2014. - V. 10. - I. 3. - P. 1035-1049. doi: 10.1016/j.actbio.2013.11.001.
  2. Ostrowski, N. Magnesium phosphate cement systems for hard tissue applications: a review / N. Ostrowski, A. Roy, P.N. Kumta // ACS Biomaterials Science & Engineering. - 2016. - V. 2. - I. 7. - P. 1067-1083. doi: 10.1021/acsbiomaterials.6b00056.
  3. Bose, S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review / S. Bose, S. Tarafder / Acta Biomaterialia. - 2012. - V. 8. - I. 4. - P. 1401-1421. doi: 10.1016/j.actbio.2011.11.017.
  4. Gefel, E. Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential / E. Gefel, C. Moseke, A.-M. Schmitt et al. // Bioactive Materials. - 2023. - V. 19. - P. 376-391. doi: 10.1016/j.bioactmat.2022.05.014.
  5. Jeong, J. Bioactive calcium phosphate materials and applications in bone regeneration /j. Jeong, J.H. Kim, J.H. Shim et al. // Biomaterials Research. - 2019. - V. 23. Art. № 4. - 11 p. doi: 10.1186/s40824-018-0149-3.
  6. DileepKumar, V.G. Silkworm protein-hydroxyapatite blend films for tissue engineering applications / V.G. DileepKumar, M.S. Santosh, V.K. Krut'ko et al. // Fibers and Polymers. - 2022. - V. 23. - I. 8. - P. 2082-2089. doi: 10.1007/s12221-022-4706-y.
  7. Богданова, Е.А. Разработка композиционных смесей на основе гидроксиапатита и биогенных элементов для формирования биоактивных покрытий / Е.А. Богданова, В.М. Скачков, К.В. Нефедова // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 771-780. doi: 10.26456/pcascnn/2022.14.771.
  8. Shi, H. Hydroxyapatite based materials for bone tissue engineering: a brief and comprehensive introduction / H. Shi, Z. Zhou, W. Li, et al. // Crystals. - 2021. - V. 11. - I. 2. - Art. № 149. - 18 p. doi: 10.3390/cryst11020149.
  9. Fiume, E. Hydroxyapatite for biomedical applications: a short overview / E. Fiume, G. Magnaterra, A. Rahdar et al. // Ceramics. - 2021. - V. 4. - I. 4. - P. 542-563. doi: 10.3390/ceramics4040039.
  10. Kazakova, G. Resorbable Mg2+-containing phosphates for bone tissue repair / G. Kazakova, T. Safronova, D. Golubchikov et al. // Materials. - 2021. - V. 14. - I. 17. - Art. № 4857. - 16 p. doi: 10.3390/ma14174857.
  11. Мусская, О.Н. Жидкофазный синтез фосфатов кальция в присутствии галловой кислоты / О.Н.Мусская, В.К. Крутько, И.Е. Глазов, А.И. Кулак // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 1000-1008. doi: 10.26456/pcascnn/2023.15.1000.
  12. Ferraris, S. Grafting of gallic acid to metallic surfaces / S. Ferraris, M. Cazzola, G. Ubertalli et al. // Applied Surface Science. - 2020. - Vol. 511. - Art. № 145615. - 7 p. doi: 10.1016/j.apsusc.2020.145615.
  13. Мусская, О.Н. Синтез фосфатов магния в полимерной матрице/ О.Н. Мусская, В.К. Крутько, А.И. Кулак // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - С. 860-867. doi: 10.26456/pcascnn/2020.12.860.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).