Release of cisplatin from bioinert templates in mixture with hydroxyapatite

Cover Page

Cite item

Full Text

Abstract

The dynamics of cisplatin release and its mixture with hydroxyapatite from bioinert templates based on carbon felt and polyethylene were studied. Changing the polyethylene and carbon felt layer ratio in the templates influenced the volumetric concentration of cisplatin and the duration of its release. The diffusion of cisplatin from the samples was limited by the number of polyethylene layers. After crystallization at 800°C, the phase composition of hydroxyapatite- α is 65% hydroxyapatite and 35% α -tricalcium phosphate, and hydroxyapatite- αβ consists of 50% hydroxyapatite, 35% α - and 15% β - tricalcium phosphate. Long-term (44 days) release was observed in templates with 2-3 layers of carbon felt and 3-4 layers of polyethylene, and it was slowed when using mixtures with hydroxyapatite (58 days). The appending of hydroxyapatite/cisplatin mixtures into the template with varying amounts of hydroxyapatite phases and α -/ β -tricalcium phosphates slowed the release of cisplatin by 14 days, totaling 58 days, due to the sorption and/or binding of cisplatin to calcium phosphates.

About the authors

Valentina K. Krut'ko

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Email: tsuber@igic.bas-net.by
Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry

Lyubov Yu. Maslova

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Junior Researcher, Photochemistry and Electrochemistry Laboratory

Valeryia A. Suchok

Research and Manufacturing Limited Liability Company «Medbiotech»

Сhemical Engineer, Composites Research and Manufacturing Laboratory

Olga N. Musskaya

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Ph. D., Assistant Professor, Leading Researcher, Photochemistry and Electrochemistry Laboratory

Anatoly I. Kulak

Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus

Academician, D. Sc., Professor, Director of the Institute of General and Inorganic Chemistry of the NAS of Belarus

References

  1. Furue, H. Chemotherapy cancer treatment during the past sixty years / H. Furue // Japanese Journal of Cancer and Chemotherapy. - 2003. - V. 30. - I. 10. - P. 1404-1411.
  2. Hryniuk, W.M. Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer / W.M. Hryniuk, A. Figueredo, M. Goodyear // Seminars in Oncology. - 1987. - V. 14. - I. 4. - Suppl. 4. - P. 3-11.
  3. Undevia, S.D. Pharmacokinetic variability of anticancer agents / S.D. Undevia, G. Gomez-Abuin, M.J. Ratain // Nature Reviews Cancer. - 2005. - V. 5. - I. 6. - P. 447-458. doi: 10.1038/nrc1629.
  4. Veselov, V.V. Targeted delivery methods for anticancer drugs / V.V. Veselov, A.E. Nosyrev, L. Jicsinszky et al. // Cancers (Basel). - 2022. - V. 14. - I. 3. - Art. № 622. - 28 p. doi: 10.3390/cancers14030622.
  5. Dasari, S. Cisplatin in cancer therapy: molecular mechanisms of action / S. Dasari, P.B. Tchounwou // European Journal of Pharmacology. - 2014. - V. 740. - P. 364-378. doi: 10.1016/j.ejphar.2014.07.025.
  6. Крутько, В.К. Формирование биомиметического апатита на кальцийфосфатной пенокерамике в стандартном и бескарбонатном модельных растворах / В.К. Крутько, Л.Ю. Маслова, О.Н. Мусская, А.И. Кулак // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 982-991. doi: 10.26456/pcascnn/2023.15.982.
  7. Olton, D. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: influence of the synthesis parameters on transfection efficiency / D. Olton, J. Li, M.E. Wilson et al. // Biomaterials. - 2007. - V. 28. - I. 6. - P. 1267-1279. doi: 10.1016/j.biomaterials.2006.10.026.
  8. Крутько, В.К. Композиты на основе кальцийфосфатной пенокерамики и геля гидроксиапатита / В.К. Крутько, Л.Ю. Маслова, О.Н. Мусская, А.И. Кулак // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 791-799. doi: 10.26456/pcascnn/2022.14.791.
  9. Fujisaki, J. Osteotropic drug delivery system (ODDS) based on bisphosphonic prodrug. V. Biological disposition and targeting characteristics of osteotropic estradiol /j. Fujisaki, Y. Tokunaga, T. Takahashi et al. // Biological and Pharmaceutical Bulletin. - 1997. - V. 20. - I. 11. - P. 1183-1187. doi: 10.1248/bpb.20.1183.
  10. Miguel, de L. Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery / L. de Miguel, I. Popa, M. Noiray et al. // Pharmaceutical Research. - 2015. - V. 32. - I. 5. - P. 1794-1803. doi: 10.1007/s11095-014-1576-z.
  11. Lai, Y.-L. Electrochemical deposition of cisplatin on pure magnesium / Y.-L. Lai, C.-C. Lin, S.-R. Hsu, S.-K. Yen // Journal of The Electrochemical Society. -2018. - V. 165. - № 5. - P. D196-D205. doi: 10.1149/2.0501805jes.
  12. Saber-Samandari, S. The effective role of hydroxyapatite based composites in anticancer drug delivery systems / S. Saber-Samandari, N. Nezafati, S. Saber-Samandari // Critical Reviews in Therapeutic Drug Carrier Systems. - 2016. - V. 33. - I. 1. - P. 41-75. doi: 10.1615/CritRevTherDrugCarrierSyst.v33.i1.30.
  13. Benedetti, M. Adsorption of the cis-[Pt(NH3)2(P2O7)](2-) (phosphaplatin) on hydroxyapatite nanocrystals as a smart way to selectively release activated cis-[Pt(NH3)2Cl2] (cisplatin) in tumor tissues / M. Benedetti, F. De Castro, A. Romano et al. // Journal of Inorganic Biochemistry. - 2016. - V. 157. - P. 73-79. doi: 10.1016/j.jinorgbio.2016.01.019.
  14. Marcato, P.D. Cisplatin properties in a nanobiotechnological approach to cancer: a mini-review / P.D. Marcato, W.J. Fávaro, N. Durán // Current Cancer Drug Targets. - 2014. - V. 14. - I. 5. - P. 458-476. doi: 10.2174/1568009614666140508154020.
  15. Gao, L. The improved antitumor efficacy of continuous intratumoral chemotherapy with cisplatin-loaded implants for the treatment of sarcoma 180 tumor-bearing mice / L. Gao, S. Cai, A. Cai et al. // Drug Delivery. - 2019. - V. 26. - I. 1. - P. 208-215. doi: 10.1080/10717544.2019.1574938.
  16. Shikanov, A. Cisplatin tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant / A. Shikanov, S. Shikanov, B. Vaisman et al. // Chemotherapy Research and Practice. - 2011. - V. 2011. - I. 1. - Art. № 175054. - 9 p. doi: 10.1155/2011/175054.
  17. Пат. 21881 Республика Беларусь, МПК A 61L 27/40. Углеволокнистый композиционный материал для устранения дефектов мягких тканей / Дубкова В.А.; заявитель и патентообладатель Дубкова В.А. - заявл. 18.11.14; опубл. 30.04.18. - 9 с.
  18. Крутько, В.К. Кальцийфосфатная пенокерамика, полученная обжигом порошковой смеси гидроксиапатит-монокальцийфосфат моногидрат / В.К. Крутько, Л.Ю. Маслова, О.Н. Мусская и др. // Стекло и керамика. - 2021. - Вып. 12. - С. 15-21.
  19. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2. - 01.07.2024.
  20. Barroug, A.Interactions of cisplatin with calcium phosphate nanoparticles: in vitro controlled adsorption and release / A. Barroug, L.T. Kuhn, L.C. Gerstenfeld, M.J. Glimcher // Journal of Orthopaedic Research. - 2004. - V. 22. - I. 4. - P. 703-708. doi: 10.1016/j.orthres.2003.10.016.
  21. Barroug, A. Hydroxyapatite crystals as a local delivery system for cisplatin: adsorption and release of cisplatin in vitro / A. Barroug, M.J. Glimcher // Journal of Orthopaedic Research. - 2002. - V. 20. - I. 2. - P. 274-280. doi: 10.1016/S0736-0266(01)00105-X.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).