Electrochemical and biomimetic deposition of calcium phosphates on titanium alloys

Capa

Citar

Texto integral

Resumo

The presence of impurities of other metals in titanium alloys affects the composition of the oxide film after heat treatment: in addition to rutile, the VT 00 alloy contains Ti 6 O oxide, which in the VT 1-0 and VT 6 alloys is transformed into Ti 3 O oxide, which affects the corrosion resistance and mechanical strength. Calcium phosphate coatings containing brushite, calcite and apatite were obtained by electrochemical deposition on titanium plates at room temperature, pH 5, and a constant current density of 30 mA/cm2 from a suspension electrolyte CaCO 3 / Ca ( H 2 PO 4)2. A layer of amorphized apatite was applied to the coatings using the biomimetic method in a 3-fold concentrated model solution of Simulated Body Fluid to improve biocompatibility. After heat treatment at 800°C, calcium phosphate coatings obtained on titanium VT 00 have greater biocompatibility, but lower resorbability, due to the presence of a larger amount of crystalline hydroxyapatite in the coating.

Sobre autores

Anna Doroshenko

Institute of General and Inorganic Chemistry of the NAS of Belarus

Email: doroshenko@igic.bas-net.by
Junior Researcher of Photochemistry and Electrochemistry Laboratory

Valentina Krut'ko

Institute of General and Inorganic Chemistry of the NAS of Belarus

Ph. D., Assistant Professor, Head of the Laboratory of Photochemistry and Electrochemistry

Olga Musskaya

Institute of General and Inorganic Chemistry of the NAS of Belarus

Ph. D., Assistant Professor, Leading Researcher of Photochemistry and Electrochemistry Laboratory

Anatoly Kulak

Institute of General and Inorganic Chemistry of the NAS of Belarus

Academician of the NAS of Belarus, Dr. Sc., Professor, Director of The Institute of General and Inorganic Chemistry of the NAS of Belarus

Bibliografia

  1. Quinn, J. Titanium for orthopedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation /j. Quinn, R. McFadden, C.-W. Chan, L. Carson // iScience. - 2020. - V. 23. - I. 11. - Art. no. 101745. - 22 p. doi: 10.1016/j.isci.2020.101745.
  2. Geetha, M. Ti based biomaterials, the ultimate choice for orthopaedic implants-a review / M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia // Progress in Materials Science. - 2009. - V. 54. - I. 3. - P. 397-425. doi: 10.1016/j.pmatsci.2008.06.004.
  3. Hanawa, T. Biofunctionalization of titanium for dental implant / T. Hanawa // Japanese Dental Science Review. - 2010. - V. 46. - I. 2. - P. 93-101. doi: 10.1016/j.jdsr.2009.11.001.
  4. Farrakhov, R.Comparison of biocompatible coatings produced by plasma electrolytic oxidation on cp-Ti and Ti-Zr-Nb superelastic alloy / R. Farrakhov, O. Melnichuk, E. Parfenov et al. // Coatings. - 2021. - V. 11. - I. 4. - P. 401-416. doi: 10.3390/coatings11040401.
  5. Sheremetyev, V. In situ XRD study of stress- and cooling-induced martensitic transformations in ultrafine- and nano-grained superelastic Ti-18Zr-14Nb alloy / V. Sheremetyev, S. Dubinckiy, A. Kudryashova et al. // Journal of Alloys and Compounds. - 2022. - V. 902. - Art. № 163704. - 17 p. doi: 10.1016/j.jallcom.2022.163704.
  6. Tchana Nkonta, D.V. Influence of the surface mechanical attrition treatment (SMAT) on the corrosion behavior of Co28Cr6Mo alloy in Ringer's solution / D.V. Tchana Nkonta, F. Simescu-Lazar, R. Drevet et al. // Journal of Solid State Electrochemistry. - 2018. - V. 22. - I. 4. - P. 1091-1098. doi: 10.1007/s10008-017-3851-5.
  7. Tchana Nkonta, D.V. Effect of surface mechanical attrition treatment on the microstructure of cobalt-chromium-molybdenum biomedical alloy / D.V. Tchana Nkonta, R. Drevet, J. Faure et al. // Microscopy Research and Technique. - 2021. - V. 84. - I. 2. - P. 238-245. doi: 10.1002/jemt.23580.
  8. Huang, F. Potential dependent mechanism of the composition and electrochemical property of oxide films of Ti-6Al-3Nb-2Zr-1Mo / F. Huang, Y. Qin, H. Zhang et al. // Corrosion Science. - 2023. - V. 213. - Art. № 110978. - 11 p. doi: 10.1016/j.arth.2003.12.081
  9. de Jonge, L.T. Organic-inorganic surface modifications for titanium implant surfaces / L.T. de Jonge, S.C.G. Leeuwenburgh, J.G.C. Wolke, J.A. Jansen // Pharmaceutical Research. - 2008. - V. 25. - I. 10. - P. 2357-2369. doi: 10.1007/s11095-008-9617-0
  10. Zheng, S. Research status of aluminum base coating on titanium alloy / S. Zheng, F. Li // Coatings. - 2023. - V. 13. - I. 9. - Art. № 1525, 20 p. doi: 10.3390/coatings13091525.
  11. Song, H.-J. Characteristics and oxidation mechanism of thermal oxide on Ti-xCr and Ti-xV (x = 5, 10, 15) alloys / H.-J. Song, H.-w. Lee, J.-Y. Lee et al. // Journal of Alloys and Compounds. - 2020. - V. 815. - Art. № 152390. - 10 p. doi: 10.1016/j.jallcom.2019.152390.
  12. Seo, B. Effect of iron content on corrosion properties of pure titanium as grain refiner / B. Seo, H. Im, K. Park et al. // Materials. - 2021. - V. 14. - I. 23. - Art. № 7193. - 8 p. doi: 10.3390/ma14237193.
  13. Zhou, Z. The unfavorable role of titanium particles released from dental implants / Z. Zhou, Q. Shi, J. Wang et al. // Nanotheranostics. - 2021. - V. 5. - I. 3. - P. 321-332. doi: 10.7150/ntno.56401.
  14. Tang, G. Recent trends in the development of bone regenerative biomaterials / G. Tang, Z. Liu, Y. Liu et al. // Frontiers in Cell and Developmental Biology. - 2021. - V. 9. - Art. № 665813. - 18 p. doi: 10.3389/fcell.2021.665813.
  15. Karachalios, T. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study / T. Karachalios, C. Tsatsaronis, G. Efraimis et al. // The Journal of Arthroplasty. - 2004. - V. 19. - I. 4. - P. 469-475. doi: 10.1016/j.arth.2003.12.081.
  16. Kokubo, T. Simulated body fluid (SBF) as a standard tool to test the bioactivity of Implants / T. Kokubo, H. Takadama // In: Handbook of Biomineralization: biological aspects and structure formation; ed. by E. Epple, E. Bäuerlein. - Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007. - Ch. 7. - P. 97-109. doi: 10.1002/9783527619443.ch51.
  17. Дорошенко, А.Е. Фазовый состав и биосовместимость кальцийфосфатных покрытиий на титане, обогащенных гидроксиапатитом / А.Е. Дорошенко, В.К. Крутько, О.Н. Мусская и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 708-716. doi: 10.26456/pcascnn/2023.15.708.
  18. ten Broeke, R.H.M. Bone reaction to a biomimetic third generation hydroxyapatite coating and new surface treatment for the Symax hip stem / R. H. M. ten Broeke, A. Alves, A. Baumann et al. // The Journal of Bone and Joint Surgery British Volume. - 2011. - V. 93. - I. 6. - P. 760-768. doi: 10.1302/0301-620X.93B6.24986.
  19. Vallet-Regґı, M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery / M. Vallet-Regґı, I. Izquierdo-Barba, M. Colilla // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. - 2012. - V. 370. - I. 1963. - P. 1400-1421. doi: 10.1098/rsta.2011.0258.
  20. Ballo, A.M. Bone tissue reactions to biomimetic ion-substituted apatite surfaces on titanium implants / A.M. Ballo, W. Xei, A. Palmquist et al. // Journal of the Royal Society Interface. - 2012. - V. 9. - I. 72. - P. 1615-1624. doi: 10.1098/rsif.2011.0808.
  21. Vishwakarma, V. Multifunctional coatings on implant materials-a systematic review of the current scenario / V. Vishwakarma, G. Kaliaraj, K. Mosas // Coatings. - 2023. - V. 13. - I. 1. - Art. № 69. - 17 p. doi: 10.3390/coatings13010069.
  22. Крутько, В.К. Формирование апатитов на электроосажденных кальцийфосфатах в системах Ca(NO3)2/NH4H2PO4 и CaCO3/Ca(H2PO4)2 / В.К. Крутько, А.Е. Дорошенко, О.Н. Мусская и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 860-869. doi: 10.26456/pcascnn/2021.13.860.
  23. Bucur, A.I. Hydroxyapatite coatings on Ti substrates by simultaneous precipitation and electrodeposition / A.I. Bucur, E. Linul, B.O. Taranu // Applied Surface Science. - 2020. - V. 527. - Art. № 146820. - 11 p. doi: 10.1016/j.apsusc.2020.146820.
  24. Li, T.-T. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition / T.-T Li, L. Ling, M.-C. Lin et al. // Journal of Materials Science. - 2020. - V. 55. - P. 6352-6374. doi: 10.1007/s10853-020-04467-z.
  25. Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47). (Release, 2016). - Режим доступа: www.url: https://www.icdd.com/pdf-2. - 15.06.2024.
  26. Tang, S.L. Theoretical study of mechanical and thermodynamic properties of titanium oxides TixOy, Effect of thermal oxidation on titanium oxides characteristics / S.L. Tang, Y.F. Li, Y.R. Wang et al. // Materials Chemistry and Physics. -2018. - V. 213. - P. 538-547. doi: 10.1016/j.matchemphys.2018.01.038.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).