Morphology of nanocrystalline structures of hydroxyapatite based on fractal analysis

Capa

Citar

Texto integral

Resumo

Currently, the global demand for orthopedic implants exceeds 6 million units per year and continues to increase. It is known that human bone is a composite material, the inorganic part of which is formed by calcium phosphates, mainly in the form of hydroxyapatite of non-stoichiometric composition. This fact determines the interest in studying the possibility of using hydroxyapatite-based materials for biomedical purposes, which are similar to the chemical composition of the bone and dental tissues and have high biocompatibility. Research in this area is necessary from both the fundamental perspective for expanding the scope of the method, and in view of development of new materials and studying biological fluids in health and pathology. The work shows that the presence of organic and inorganic additives in the synthesis of hydroxyapatite affects the composition and morphology of the crystals of the resulting compound. The results of analysis, presented in the form of diagrams, allow us to judge the inversely proportional relationship between the crystallization time and the value of the morphological dimension of the hydroxyapatite structures, regardless of the nature of the additive. The results obtained confirm the possibility of using morphological analysis to establish the patterns of formation of hydroxyapatite-based materials and to perform an express assessment of their properties (composition, morphology, degree of crystallinity, nature and concentration of impurities).

Sobre autores

Olga Golovanova

Dostoevsky Omsk State University

Email: golovanoa2000@mail.ru
Dr. Sc., Professor, Head of the Department of Inorganic Chemistry

Vladimir Kiselev

Dostoevsky Omsk State University

Ph. D., Researcher, Inorganic Chemistry Department

Bibliografia

  1. James, S.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017 / S.L. James, D. Abate, K.H. Abate et al. // The Lancet. - 2018. - V. 392. - I. 10159. - P. 1789-1858. doi: 10.1016/s0140-6736(18)32279-7.
  2. Лесняк, О.М. Остеопороз в Российской Федерации: эпидемиология, медико-социальные и экономические аспекты проблемы (обзор литературы) / О.М. Лесняк, И.А. Баранова, К.Ю. Белова и др. // Травматология и ортопедия России. - 2018. - T. 24. - № 1. - C. 155-168. doi: 10.21823/2311-2905-2018-24-1-155-168.
  3. Kivrak, N. Synthesis of calcium hydroxyapatitetricalcium phosphate (HA-TCP) composite bioceramics powders and their sintering behavior / N. Kivrak, A.C. Taş // Journal of the American Ceramic Society. - 1998. - V. 81. - I. 9. - P. 2245-2252. doi: 10.1111/j.1151-2916.1998.tb02618.x.
  4. Gibson, I.R. Characterization of the transformation from calciumdeficient apatite to -tricalcium phosphate / I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield // Journal of Materials Science: Materials in Medicine. - 2000. - V. 11. - I. 12. - P. 799-804. doi: 10.1023/A:1008905613182.
  5. Alkhraisat, M.H. Magnesium substitution in brushite cements / M.H. Alkhraisat, J. Cabrejos-Azama, C.R. Rodríguez et al. // Journal Materials Science and Engineering. - 2013. - V. 33. - I. 1. - P. 475-481. doi: 10.1016/j.msec.2012.09.017.
  6. Cui, W. Hydrothermal synthesis of Mg-substituted tricalcium phosphate nanocrystals / W. Cui, S. Wang, R. Yang, X. Zhang // MRS Communications. - 2019. - V. 9. - I. 3. - P. 971-978. doi: 10.1557/mrc.2019.110.
  7. Guo, X. Osteogenic effects of magnesium substitution in nano-structured β-tricalcium phosphate produced by microwave synthesis / X. Guo, Y. Long, W. Li, H. Dai // Journal of Materials Science. - 2019. - V. 54. - I. 16. - P. 11197-11212. doi: 10.1007/s10853-019-03674-7.
  8. Roy, M. Effects of zinc and strontium substitution in tricalcium phosphate on osteoclast differentiation and resorption / M. Roy, G.A. Fielding, A. Bandyopadhyay, S. Bose // Biomaterials Science. - 2013. - V. 1. - I. 1. - P. 74-82. doi: 10.1039/c2bm00012a.
  9. Мясникова, Н.А. Методы и средства исследования структуры и свойств наноматериалов и покрытий с наноструктурой / Н.А. Мясникова, А.В. Сидашов. - Ростов н/Д: ФГБОУ ВО РГУПС, 2017. - 157 с.
  10. Асхабов, А.М. Новые идеи в теории образования кристаллических зародышей (обзор) / А.М. Асхабов // Известия Коми научного центра УрО РАН. - 2019. - № 2(38). - С. 51-60.
  11. Линников, О.Д. Механизм формирования осадка при спонтанной кристаллизации солей из пересыщенных водных растворов / О.Д. Линников // Успехи химии. - 2014. - Т. 83. - № 4. - С. 343-364.
  12. Nanev, C.N. Evaluation of the critical nucleus size without using interface free energy / C.N. Nanev // Journal of Crystal Growth. - 2020. - V. 535. - Art №. 125521. - 3 p. doi: 10.1016/j.jcrysgro.2020.125521.
  13. Горичев, И.Г. Анализ кинетических данных растворения оксидов металлов с позиций фрактальной геометрии / И.Г. Горичев, А.Д. Изотов, А.И. Горичев и др. // Журнал физической химии. -1999. - Т. 71. - № 10. - С. 1802-1808.
  14. Kiselev, V.M. The fractal analysis method for the study of hydroxylapatite crystallization process / V.M. Kiselev, O.A. Golovanova, V.B. Fedoseev // Applied Solid State Chemistry. - 2018. - № 3. -P. 46-51. DOI: doi: 10.18572/2619-0141-2018-3-4-46-51.
  15. Thongboonkerd, V. Should urine pH be adjusted prior to gel-based proteome analysis? / V. Thongboonkerd, S. Mungdee, W. Chiangjong // Journal of Proteome Research. - 2009. - V. 8. - I. 6. -P. 3206-3211. doi: 10.1021/pr900127x.
  16. Fleming, D.E. A comparative study of the adsorbtion of amino acids on to calcium minerals found in renal calculi / D.E. Fleming, W. Bronswijk, R.L. Ryall // Clinical Science. - 2001. - V. 101. - I. 2. - P. 159-168.
  17. Salamanna, F. Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model / F. Salamanna, G. Giavaresi, A. Parrilli et al. // Journal Materials Science and Engineering: C. - 2017. - V. 95. - P. 355-362. doi: 10.1016/j.msec.2017.11.016.
  18. Вода питьевая. Метод определения содержания полифосфатов: ГОСТ 18309-72; введ. 01.01.1974. -М.: Госстандарт СССР, 1972. - 5 c.
  19. База данных 2020620022 Российская Федерация. Фрактальная размерность кристаллических структур гидроксилапатита, полученного осаждением из водного раствора в присутствии добавок / Голованова О.А., Киселев В.М.; заявители и патентообладатели ФГБОУ ВО "омский государственный университет им. Ф.М. Достоевского. - № 2019622529; заявл. 24.12.2019; опубл. 10.01.20, Бюл. № 1. - 1,87 Мб.
  20. Лурье, Ю.Ю. Справочник по аналитической химии / Ю.Ю. Лурье. - М: Химия, 1989. - 448 с.
  21. Ressler, A. Strontium substituted biomimetic calcium phosphate system derived from cuttlefish bone / A. Ressler, M. Cvetnić, M. Antunović et al. // Journal of Biomedical Materials Research Part B: Applied Biomaterials. - 2020. - V. 108. - I. 4. - P. 1697-1709. doi: 10.1002/jbm.b.34515.
  22. Zhang, J. Concentration-dependent osteogenic and angiogenic biological performances of calcium phosphate cement modified with copper ions /j. Zhang, H. Wu, F. He et al. // Journal Materials Science and Engineering: C. - 2019. - V. 99. - P. 1199-1212. doi: 10.1016/j.msec.2019.02.042.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).