Size effects of friction in pure titanium

Capa

Citar

Texto integral

Resumo

The article is devoted to an experimental study of the tribological behavior without lubrication of commercial pure titanium under specific conditions close to fretting, which differs from traditional tests by the small amplitude and frequency of indenter movement. Tribological characteristics: wear and the friction coefficient at room and elevated temperatures of Grade 4 titanium are compared in the ultrafine-grained (grain size dg = 0,45 μm) and coarse-grained state ( dg = 45 μm). It has been shown that at room temperature, reducing the grain size by two orders of magnitude increases wear and the friction coefficient. Reducing the displacement amplitude from 300 to 50 μm brings the friction conditions closer to fretting and reduces both wear and friction coefficient. An increase in temperature from room temperature to 350°C transforms the traditional type of wear into the formation of an oxide film and reduces the friction coefficient. The boundary conditions for the occurrence of fretting and their applicability to nanostructures are discussed.

Sobre autores

Vladimir Stolyarov

Mechanical Engineering Research Institute of RAS

Email: vlstol@mail.ru
Dr. Sc., Chief Researcher

Bibliografia

  1. Waterhouse, R. Fretting wear / R. Waterhouse // Wear. - 1984. - V. 100. - I. 1-3. - P. 107-118. doi: 10.1016/0043-1648(84)90008-5.
  2. Waterhouse, R.B. Fretting corrosion / R.B. Waterhouse // In: International Series of Monographs on Materials Science and Technology. - V. 10. - Oxford: Pergamon Press, 1972. - 253 p.
  3. Mall, S. Effects of microstructure on fretting fatigue behavior of IN100 / S. Mall, H.-K. Kim, E.C. Saladin, W.J. Porter // Material Science and Engineering A. - 2010. - V. 527. - I. 6. - P. 1453-1460. doi: 10.1016/j.msea.2009.10.068.
  4. Nowell, D. Recent developments in the understanding of fretting fatigue / D. Nowell, D. Dini, D.A. Hills // Engineering Fracture Mechanics. - 2006. - V. 73. - I. 2. - P. 207-222. doi: 10.1016/j.engfracmech.2005.01.013.
  5. Zhang, X. Improvement of the fretting damage resistance of Ti-811 alloy by CuNi multilayer films / X. Zhang, D. Liu, G. Liu et al. // Tribology International. - 2011. - V. 44. - I. 11. - P. 1488-1494. doi: 10.1016/j.triboint.2010.11.005.
  6. Vadiraj, A. Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys / A. Vadiraj, M. Kamaraj // Tribology International. - 2007. -V. 40. - I. 1. - P. 82-88. doi: 10.1016/j.triboint.2006.02.064.
  7. Fridrici, V. Fretting wear behaviour of a titanium alloy / V. Fridrici, S. Fouvry, P. Kapsa // In: Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. NATO science series; ed. by B. Bhushan. - V. 10. - Dordrecht: Springer, 2001. - P. 413-421. doi: 10.1007/978-94-010-0736-8_29.
  8. Blanchard, P. Material effects in fretting wear: application to iron, titanium, and aluminum alloys / P. Blanchard, C. Colombie, V. Pellerin et al. // Metallurgical Transaction A. - 1991. - V. 22. - I. 7. - P. 1535-1544. doi: 10.1007/BF02667367.
  9. Zhang, Y.S. Fretting wear behavior of nanocrystalline surface layer of pure copper under oil lubrication / Y.S. Zhang, Z. Han // Tribology Letters. - 2007. - V. 27. - I. 7. - P. 53-59. doi: 10.1007/S11249-007-9204-2.
  10. Wang, C.T. Tribology testing of ultrafine-grained Ti processed by high-pressure torsion with subsequent coating / C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, T.G. Langdon // Journal of Materials Science. - 2013. - V. 48. - I. 13. - P. 4742-4748. doi: 10.1007/s10853-012-7110-y.
  11. Misochenko, A.A. Influence of grain size and contact temperature on the tribological behaviour of shape memory Ti49.3Ni50.7 alloy / A.A. Misochenko, S.V. Chertovskikh, L. Sh. Shuster, V.V. Stolyarov // Tribology Letters. - 2017. - V. 65. - I. 4. - Art. № 131. - 7 p. doi: 10.1007/s11249-017-0917-6.
  12. Столяров, В.В. Трибологические аспекты наноструктурных материалов / В.В. Столяров // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 840-850. doi: 10.26456/pcascnn/2023.15.840.
  13. Pakhomov, M. Features of wear and friction in titanium / M. Pakhomov, D. Gorlov, V. Stolyarov // IOP Conference Series: Materials Science and Engineering. - 2020. - V. 996. - Art. № 012017. - 5 p. doi: 10.1088/1757-899X/996/1/012017.
  14. Семенова, И.П. Формирование ультрамелкозернистых структур и повышенных механических свойств в малолегированных титановых сплавах комбинированными методами интенсивной пластической деформации: дис.. д-ра техн. наук: 05.16.01 / Семенова Ирина Петровна. - Уфа: Юж.-Ур. гос. ун-т, 2011. - 273 с.
  15. Varenberg, M. Slip index: a new unified approach to fretting / M. Varenberg, I. Etsion, G. Halperin // Tribology Letters. - 2004. - V. 17. - № 3. - P. 569-573. DOI:1023-8883/04/1000-0569/0.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).