Temperature evolution of dielectric characteristics of PVDF and P(VDF-TrFE) films produced by 4D printing

Cover Page

Cite item

Full Text

Abstract

In this work, films of polyvinylidene fluoride, copolymer of vinylidene fluoride and trifluoroethylene have been studied. The samples were made by direct ink writing technology. Some of the produced films were polarized in the corona discharge field. The dependences of the relative permittivity on temperature were studied for the films. The study showed that for polyvinylidene fluoride films, no maximum is observed in the dependences of the permittivity on temperature, since the assumed temperature of the ferroelectric phase transition is higher than the melting temperature. The maximum in the temperature dependence of permittivity for polarized copolymer of vinylidene fluoride and trifluoroethylene films is shifted by 10℃ toward higher temperatures compared to the maximum for non-polarized films. In this case, the permittivity of non-polarized films has higher values compared to the corresponding value for polarized samples. This is due to an increase in the proportion of the β -phase after polarization, as well as to the internal electric field caused by the space charge formed during the polarization process at the phase boundaries.

About the authors

Alexander V. Solnyshkin

Tver State University

Dr. Sc., Professor, Condensed Matter Physics Department

Nikita V. Vostrov

Tver State University

Junior Researcher, Management of Scientific Research

Sergey I. Gudkov

Tver State University; Institute for Theoretical and Applied Electromagnetics Russian Academy of Sciences

Ph. D., Junior Researcher, Management of Scientific Research, Tver State University; Lead Engineer, Institute for Theoretical and Applied Electromagnetics of RAS

Alexey N. Belov

National Research University of Electronic Technology

Dr. Sc., Professor, Institute of Integrated Electronics named after Academician K.A. Valiev

References

  1. Guo, M. Flexible robust and high-density FeRAM from array of organic ferroelectric nano-lamellae by self-assembly / M. Guo, J. Jiang, J. Qian et al. // Advanced Science. - 2019. - V. 6. - I. 6. - Art. № 1801931. - 9 p. doi: 10.1002/advs.201801931.
  2. Melnikov, A.R. Application of pyroelectric sensors based on PVDF films for EPR spectra detection by heat release / A.R. Melnikov, S.B. Zikirin, E.V. Kalneus et al. // Sensors. - 2021. - V. 21. - I. 24. - Art. № 8426. - 12 p. doi: 10.3390/s21248426.
  3. Ducrot, P.H. Optimization of PVDF-TrFE processing conditions for the fabrication of organic MEMS resonators / P.H. Ducrot, I. Dufour, C. Ayela // Scientific Reports. - 2016. - V. 6. - Art. № 19426. - 7 p. doi: 10.1038/srep19426.
  4. Kim, H.Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application / H. Kim, F. Torres, Y. Wu et al. // Smart Materials and Structures. - 2017. - V. 26. - № 8. - Art. № 085027. -15 p. doi: 10.1088/1361-665X/aa738e.
  5. Белов, А.Н. Планарная струйная печать локализованных структур Ni/P(VDF-TrFE)/Ni для пьезо- и пироэлектрических матриц / А.Н. Белов, Н.В. Востров, Г.Н. Пестов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 637-648. doi: 10.26456/pcascnn/2023.15.637.
  6. Hon, K.K.B. Direct writing technology - advances and developments / K.K.B. Hon, L. Li, I.M. Hutchings // CIRP Annals. - 2008. - V. 57. - I. 2. - P. 601-620. doi: 10.1016/j.cirp.2008.09.006.
  7. Bodkhe, S. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures / S. Bodkhe, G. Turcot, F.P. Gosselin et al. // ACS Applied Materials & Interfaces. - 2017. - V. 9. - I. 24. - P. 20833-20842. doi: 10.1021/acsami.7b04095.
  8. Востров, Н.В. Исследование физических свойств тонких пленок ПВДФ, изготовленных методом 4D-печати / Н.В. Востров, А.В. Солнышкин, И.М. Морсаков и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 561-571. doi: 10.26456/pcascnn/2022.14.561.
  9. Mai, M. The thickness dependence of the phase transition temperature in PVDF / M. Mai, V. Fridkin, B. Martin et al. // Physica B: Condensed Matter. - 2013. - V. 421. - P. 23-27. doi: 10.1016/j.physb.2013.04.002.
  10. Tashiro, K. Phase transition at a temperature immediately below the melting point of poly(vinylidene fluoride) from I: A proposition for the ferroelectric Curie point / K. Tashiro, K. Takano, M. Kobayashi et al. // Polymer. - 1983. - V. 24. - I. 2. - P. 199-204. doi: 10.1016/0032-3861(83)90133-7.
  11. Xia, W.M. A crystal phase transition and its effect on the dielectric properties of a hydrogenated P(VDF-co-TrFE) with low TrFE molar content / W.M. Xia, Y.J. Gu, C.Y. You et al. // RSC Advances. - 2015. - V. 5. - I. 130. - P. 107557-107565. doi: 10.1039/C5RA22904A.
  12. Ruf, R. The ferroelectric phase transition of P(VDF-TrFE) polymers / R.Ruf, S. Bauer, B. Ploss // Ferroelectrics. - 1992. - V. 127. - I. 1. - P. 209-214. doi: 10.1080/00150199208223372.
  13. Быстров, В.С. Компьютерное моделирование свойств ПВДФ и П(ВДФ-ТрФЭ) нанопленок при фазовом переходе и эмиссионная cпектроскопия их поляризации / В.С. Быстров, Е.В. Парамонова, Ю.Д. Дехтяр и др. // Математическая биология и биоинформатика. - 2011. - Т. 6. - Вып. 2. - С. 273-297. doi: 10.17537/2011.6.273.
  14. Furukawa, T. Phenomenological aspect of a ferroelectric vinylidene fluoride/trifluoroethylene copolymer / T. Furukawa // Ferroelectrics. - 1984. - V. 57. - I. 1. - P. 63-72. doi: 10.1080/00150198408012752.
  15. Menegotto, J. Dielectric relaxation spectra in ferroelectric P(VDF-TrFE) copolymers /j. Menegotto, L. Ibos, A. Bernes et al. // Ferroelectrics. - 1999. - V. 228. - I. 1. - P. 1-22. doi: 10.1080/00150199908226122.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).