Modelling of adaptive phase-shifting filter cells with optical control based on multilayer structures of phase-change materials

Cover Page

Cite item

Full Text

Abstract

The paper presents the results of modelling the phase shift of a passing optical beam caused by the formation of a layered structure in a controllable cell made of the phase-change material Ge2Sb2Te5 induced by the controlling influence of pulsed laser radiation of short and ultrashort duration. The crystallization of a thin film of Ge2Sb2Te5 is analyzed on the basis of the thermokinetic approach, taking into account the kinetic properties of the material, the energy and duration of the applied laser radiation, the amorphization of the upper layers of the film during rapid heating and the temperature dependence of the kinetic properties. Graphs of the thickness of the crystalline layer in the film material were plotted for each influencing pulsed radiation. From the data on the position of the crystalline layer, the phase shift of the transmitted optical radiation is calculated. Based on the modelling data of the investigated cell, a phase shifter can be constructed to transform an optical beam of arbitrary aperture. The proposed method of controlling the optical beam front by changing the structural state of a thin film can be very promising when accurate and fast tuning of the optical phase transparency is required.

About the authors

Alexey V. Kiselev

National Research Centre «Kurchatov Institute»

Researcher

Vladimir A. Mikhalevsky

National Research Centre «Kurchatov Institute»

Researcher

Alexey A. Nevzorov

National Research Centre «Kurchatov Institute»

Ph. D., Researcher

Anton A. Burtsev

National Research Centre «Kurchatov Institute»

Email: murrkiss2009@yandex.ru
Researcher

Vitaly V. Ionin

National Research Centre «Kurchatov Institute»

Researcher

Nikolay N. Eliseev

National Research Centre «Kurchatov Institute»

Junior Researcher

Andrey A. Lotin

National Research Centre «Kurchatov Institute»

Ph. D., Deputy Head of the branch

References

  1. Phase change materials: science and applications / ed. by S. Raoux, M. Wutting. - New York: Springer Science+Business Media, LLC, 2009. - 450 p. doi: 10.1007/978-0-387-84874-7.
  2. Abdollahramezani, S. Tunable nanophotonics enabled by chalcogenide phase-change materials / S. Abdollahramezani, O. Hemmatyar, H. Taghinejad et al.// Nanophotonics. - 2020. - V. 9. - I. 5. - P. 1189-1241. doi: 10.1515/nanoph-2020-0039.
  3. Sarwat, S.G. Materials science and engineering of phase change random access memory / S.G. Sarwat // Materials Science and Technology. - 2017. - V. 33. - I. 16. - P. 1890-1906. doi: 10.1080/02670836.2017.1341723.
  4. Wuttig, M. The science and technology of phase change materials / M. Wuttig, S. Raoux // Zeitschrift für anorganische und allgemeine Chemie. - 2012. - V. 638. - I. 15. - P. 2455-2465. doi: 10.1002/zaac.201200448.
  5. Lian, C. Photonic (computational) memories: tunable nanophotonics for data storage and computing / C. Lian, C. Vagionas, T. Alexoudi et. al. // Nanophotonics. - 2022. - V. 11. - I. 17. - P. 3823-3854. doi: 10.1515/nanoph-2022-0089.
  6. Zhang, W. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing/ W. Zhang, R. Mazzarello, M. Wuttig, E. Ma // Nature Reviews Materials. - 2019. - V. 4. - I. 3. - P. 150-168. doi: 10.1038/s41578-018-0076-x.
  7. Kolobov, A.V. Chalcogenides: metastability and phase change phenomena / A.V. Kolobov, J. Tominaga. - Berlin, Heidelberg: Springer-Verlag, 2012. - XVI+284 p. doi: 10.1007/978-3-642-28705-3.
  8. Guo, P. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators / P. Guo, A.M. Sarangan, I. Agha // Applied sciences. - 2019. - V. 9. - I. 3. - Art. № 530. - 26 p. doi: 10.3390/app9030530.
  9. Cao, T. Fundamentals and applications of chalcogenide phase-change material photonics / T. Cao, M. Cen // Advanced Theory and Simulations. - 2019. - V. 2. - I. 8. - Art. № 1900094. - 17 p. doi: 10.1002/adts.201900094.
  10. Sreekanth, K.V. New directions in thin film nanophotonics / K.V. Sreekanth, M. ElKabbash, V. Caligiuri et al. - Singapore: Springer, 2019. - X+172 p. doi: 10.1007/978-981-13-8891-0.
  11. Zhou, G.F. Materials aspects in phase change optical recording/ G.F. Zhou // Materials Science and Engineering: A. - 2001. - V. 304-306. - P. 73-80. doi: 10.1016/S0921-5093(00)01448-9.
  12. Weidenhof, V. Laser induced crystallization of amorphous Ge2Sb2Te5 films / V. Weidenhof, I. Friedrich, S. Ziegler, M. Wuttig // Journal of Applied Physics. - 2001. - V. 89. - I. 6. - P. 3168-3176. doi: 10.1063/1.1351868.
  13. Yang, I. Effect of doped nitrogen on the crystallization behaviors of Ge2Sb2Te5 / I. Yang, K. Do, H.J. Chang et al. // Journal of The Electrochemical Society. - 2010. - V. 157. - I. 4. - P. H483-H486. doi: 10.1149/1.3321759.
  14. Ashwin, P. Fast simulation of phase-change processes in chalcogenide alloys using a Gillespie-type cellular automata approach / P. Ashwin, B.S.V. Patnaik, C.D. Wright // Journal of Applied Physics. - 2008. - V. 104. - I. 8. - Art. № 084901. - 8 p. doi: 10.1063/1.2978334.
  15. Nevzorov, A.A. Discrete thermokinetic computational model of laser-induced phase transitions in phase-changing materials / A.A. Nevzorov, V.A. Mikhalevsky, N.N. Eliseev et al. // Applied Physics Letters. - 2023. - V. 122. - I. 19. - Art. № 191106. - 7 p. doi: 10.1063/5.0147844.
  16. Orava, J. Classical-nucleation-theory analysis of priming in chalcogenide phase-change memory /j. Orava, A.L. Greer // Acta Materialia. - 2017. - V. 139. - P. 226-235. doi: 10.1016/j.actamat.2017.08.013.
  17. Abdelghfar, A. Electrostatically tuned optical filters based on hybrid plasmonic-dielectric thin films for hyperspectral imaging / A. Abdelghfar, M.A. Mousa, B.M. Fouad et al. // Micromachines. - 2021. - V. 12. - I. 7. - Art. № 767. - 14 p. doi: 10.3390/mi12070767.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).