Calculation of the electronic absorption spectrum of a nanocluster (TiO2)15 doped with a nitrogen atom

Capa

Citar

Texto integral

Resumo

At the initial stage of the formation of titanium dioxide nanoparticles, clusters of ( TiO 2) n are formed, which, due to their unique electronic structures, may have an increased reactivity in comparison with large nanoparticles. The quantum chemical calculation of the equilibrium geometry of clusters ( TiO 2)15 and Ti 15 O 29 N 1 of the rutile modification was performed using the density functional theory methods. Using the nonstationary density functional theory in the TD DFT/B3LYP/6-31G(d) approximation, the electronic absorption spectra of clusters in vacuum and aqueous medium are calculated. The Ti 15 O 29 N 1 cluster doped with a nitrogen atom is characterized by the presence of absorption bands with wavelengths mainly in the visible region of the spectrum (430-780 nm) and a significant decrease in the Egap energy gap between the lower vacant and higher occupied molecular orbitals in comparison with ( TiO 2)15. The influence of the position of the nitrogen atom in the central TiO 6 fragment of the Ti 15 O 29 N 1 cluster on the Egap value, the shift of the electronic absorption spectrum and the maximum strength of the fmaxoscillator among 30 electronic transitions is shown. It has been found that when taking into account the aquatic environment, the positions of the absorption bands in the electronic spectra shift to the region of shorter wavelengths. For transitions with the highest oscillator strength, the presence of an aqueous medium leads to a significant increase in the fmax value.

Sobre autores

Gennady Mikhailov

Ufa University of Science and Technology

Email: gpmikhailov@mail.ru
Dr. Sc., Professor, Department of Materials Science and Physics of Metals

Bibliografia

  1. Zavatski, S. Density functional theory for doped TiO2: current research strategies and advancements / S. Zavatski, E. Neilande, H. Bandarenka et.al. // Nanotechnology. - 2024. - V. 35. - № 19. - Art. № 192001. - 28 p. doi: 10.1088/1361-6528/ad272e.
  2. Du, S. Visible light-responsive N-doped TiO2 photocatalysis: synthesis, characterizations, and applications / S. Du, J. Lian, F. Zhang // Transactions of Tianjin University. - 2022. - V. 28. - I. 1. - P. 33-52. doi: 10.1007/s12209-021-00303-w.
  3. Пат. 2789160 Российская Федерация, МПК B01J 35/00 (2006.01) и др. Легированные азотом наночастицы TiO2 и их применение в фотокатализе / Бальди Д., Никколай Л. и др.; заявитель и патентообладатель КОЛОРОББИА КОНСАЛТИНГ С.Р.Л. (IT). - № 2020137621; заявл. 02.05.19; опубл. 30.01.23, Бюл. № 4. - 3 с.
  4. Qu, Z.-w. Theoretical study of stable, defect-free (TiO2)n nanoparticles with n=10-16 / Z.-w. Qu, G.-J. Kroes // The Journal of Physical Chemistry C. - 2007. - V. 111. - I. 45. - P.16808-16817. doi: 10.1021/jp073988t.
  5. Cossi, M. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model / M. Cossi, N. Rega, G. Scalmani et al. // Journal of Computational Chemistry. - 2003. - V. 24. - I. 6. - P. 669-681. doi: 10.1002/jcc.10189.
  6. Frisch, M.J. Gaussian 09 (Revision D.01) / M.J. Frisch, G.M. Trucks et al. - Wallingford: Gaussian Inc., 2013.
  7. Chemcraft - graphical software for visualization of quantum chemistry computations. Version 1.6. - Режим доступа: www.chemcraftprog.com. - 1.09.2024.
  8. Kakil, S. Theoretical and experimental investigation of the electronic and optical properties of pure and interstitial nitrogen-doped (TiO2)n cluster / S. Kakil, H.Y. Abdullah, T.G. Abdullah // Preprint posted 17.11.2021. doi: 10.21203/rs.3.rs-975265/v1.
  9. Ansari, S.A. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis / S.A. Ansari, M.M. Khan, M.O. Ansari, M.H. Cho. // New Journal of Chemistry. - 2016. - V. 40. - I. 4. - P. 3000-3009. doi: 10.1039/c5nj03478g.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).