Au adsorption on W(100): calculation

Capa

Citar

Texto integral

Resumo

The adsorption of gold atoms on the surface of the (100) tungsten face was calculated using the density functional method. A 2 D layer of W atoms was used as a tungsten substrate. The 2 D layer of W was modeled by a W (100) 2×2×2 supercell. The calculation was carried out for three sites of adsorption of the Au atom on the W (100) surface: in the hollow position, in the bridge position between the surface W atoms and on top the surface W atom. There was one Au atom per 8 surface W atoms. Adsorption of the Au atom in the bridge position is most preferable. The adsorption energy is 4,18 eV. Adsorption of Au atoms leads to the following reconstruction of the W surface: the shift of W atoms in the surface plane does not exceed 0,18 Å, and the shift of the upper layer of W atoms is 0,022 Å towards the volume of W . The valence band of the 2 D W (100) layer is formed mainly W 5 d electrons, with a minor contribution from W 6 s electrons. Adsorption of gold leads to a change in the spectrum of the valence band of the tungsten surface layer.

Sobre autores

Yurij Kuznetsov

Ioffe Institute

Researcher

Mikhail Lapushkin

Ioffe Institute

Email: lapushkin@ms.ioffe.ru
Ph. D., Docent, Senior Researcher

Bibliografia

  1. Herrera R.P., Gimeno M.C. Main avenues in gold coordination chemistry, Chemical Reviews, 2021, vol. 121, issue 14, pp. 8311-8363. DOI: 0.1021/acs.chemrev.0c00930.
  2. Dahan K.A., Li Y., Xu J., Kan C. Recent progress of gold nanostructures and their applications, Physical Chemistry Chemical Physics, 2021, vol. 25, issue 28, pp. 18545-1857. doi: 10.1039/D3CP01549A.
  3. Ghobashy M.M., Alkhursani S.A., Alqahtani H.A., El-damhougy T.K., Madani M. Gold nanoparticles in microelectronics advancements and biomedical applications, Materials Science and Engineering: B, 2024, vol. 301, art. no. 117191, 37 p. doi: 10.1016/j.mseb.2024.117191.
  4. Kuznetsov Yu.A., Lapushkin M.N. Elektronno-stimulirovannaya desorbtsiya atomov tseziya, adsorbirovannykh na poverkhnosti zolota [Electron-stimulated desorption of potassium atoms adsorbed on the surface of gold], Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov [Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials], 2020, issue 12, pp. 836-844. doi: 10.26456/pcascnn/2020.12.836. (In Russian).
  5. Dementev P.A., Dementeva E.V., Lapushkin M.N., Timoshnev S.N. Effect of sodium atom adsorption on the electronic structure of a thin gold film, Thin Solid Films, 2024, vol. 794, art. no. 140291, 9 p. doi: 10.1016/j.tsf.2024.140291.
  6. Bauer E., Bonczek F., Poppa H., Todd G. Thermal desorption of metals from tungsten single crystal surfaces, Surface Science, 1975, vol. 53, issue 1, pp. 87-109. doi: 10.1016/0039-6028(75)90118-1.
  7. Ageev V.N., Afanas'eva E.Yu. Initial stages of the interaction of sodium and cesium with gold, Physics of the Solid State, 2006, vol. 48, issue 12, pp. 2347-2353. doi: 10.1134/S1063783406120171.
  8. Afanas'eva E.Yu. Adsorption of gold on oxidized tungsten, Technical Physics, 2013, vol. 58, issue 6, pp. 793-798. doi: 10.1134/S1063784213060029.
  9. Bauer E., Poppa H., Todd G., Davis P.R. The adsorption and early stages of condensation of Ag and Au on W single-crystal surfaces, Journal Applied Physics, 1977, vol. 48, issue 9, pp. 3773-3787. doi: 10.1063/1.324245.
  10. Wertheim G.K., Buchanan D.N.E., Lee V. Properties of epitaxial Au on W(100), Physical Review B, 1986, vol. 34, issue 10, pp. 6869-6873. doi: 10.1103/PhysRevB.34.6869.
  11. Zhu Q., Wang S. Adsorption of precious and coinage metals on Rh (111), Ru (0001) and W (110) surfaces, Applied Surface Science, 2017, vol. 410, pp. 282-290. doi: 10.1016/j.apsusc.2017.03.121.
  12. Giannozz, P., Baroni S., Bonini N. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter, 2009, vol. 21, no. 39, art. no. 395502, 19 p. doi: 10.1088/0953- 8984/21/39/395502.
  13. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple, Physical Review Letters, 1996, vol. 77, issue 18, pp. 3865-3868. doi: 10.1103/physrevlett.77.3865.
  14. Troullier N., Martins J.L. Efficient pseudopotentials for plane-wave calculations, Physical Review B, 1991, vol. 43, issue 3, pp. 1993-2006. doi: 10.1103/physrevb.43.1993.
  15. Nishihara S. BURAI 1.3 A GUI of Quantum ESPRESSO. Available at: https://nisihara.wixsite.com/burai (accessed 27.07.2024).
  16. Bader R.F. A quantum theory of molecular structure and its applications, Chemical Reviews, 1991, vol. 91, issue 5, pp. 893-928. doi: 10.1021/cr00005a013.
  17. Wang H.Y. Wang N. Zhang S. et al. First-principles study on stability and electronic properties of W(001), W(110) and W(111) surfaces, Surface and Coatings Technology, 2013, vol. 229, pp. 55-59. doi: 10.1016/j.surfcoat.2012.05.09.
  18. Wimmer E., Freeman A.J., Hiskes J.R., Karo A.M. All-electron local-density theory of alkali-metal bonding on transition-metal surfaces: Cs on W(001), Physical Review B, 1983, vol. 28, issue 6, pp. 3074-3091. doi: 10.1103/PhysRevB.28.3074.
  19. Yakovkin I.N., Yakovkin I.I., Petrova, N.V. DFT and Monte Carlo study of the W (001) surface reconstruction, The European Physical Journal B, 2017, vol. 90, issue 1, pp. 1-11. doi: 10.1140/epjb/e2017-80107-7.
  20. Krupski K., Moors M., Jóźwik P. et al. Structure determination of Au on Pt (111) surface: LEED, STM and DFT study, Materials, 2015, vol. 8, issue 6, pp. 2935-2952. doi: 10.3390/ma8062935.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).