Icosahedral metallic nanoclusters: low-temperature structures or pre-melting ones?

Capa

Citar

Texto integral

Resumo

Melting of cuboctahedral nanoclusters of fcc metals ( Ag , Au , Cu , Ni , Pd и Pt ) containing 561 atoms and a transition to icosahedral isomers preceding their melting were simulated using the isothermal molecular dynamics. The heating process was simulated in the NVT ensemble using the well-known open LAMMPS program, the Verlet velocity algorithm and the Nosé-Hoover thermostat. The interatomic interactions in metal nanoparticles were reproduced by employing the embedded atom method. At a relatively low for MD experiments heating rate of 0,15 K/ps, the cuboctahedron → icosahedron transition was observed in the face-centered cubic nanoparticles of all the above metals, except for Ag nanoparticles. However, an increase in the heating rate to 1,5 K/ps led to the fact that the cuboctahedron → icosahedron transition began to be observed in Ag nanoclusters as well. Unlike nanoparticles of other metals, the cuboctahedron → icosahedron transition in Pt nanoclusters occurs at a very low temperature, close to the initial temperature preceding the heating of the particles and equal to 10 K. In contrast, in Ni particles the cuboctahedron → icosahedron transition was observed at a temperature close to the melting point.

Sobre autores

Igor Karakeyan

Tver State University

Email: pacheco.hell@mail.ru
4th year student, Physico-technical Faculty

Vladimir Puitov

Tver State University

Laboratory assistant of Management of Scientific Research

Igor Talyzin

Tver State University

Ph. D., Researcher, Management of Scientific Research

Vladimir Samsonov

Tver State University

Dr. Sc., Full Professor, General Physics Department

Bibliografia

  1. Ino, S. Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum / S. Ino // Journal of the Physical Society of Japan. - 1966. - V. 21. - № 2. - P. 346-362. doi: 10.1143/JPSJ.21.346.
  2. Allpress, J.G. The structure and orientation of crystals in deposits of metals on mica /j.G. Allpress, J.V. Sanders // Surface Science. - 1967. - V. 7. - I. 1. - P. 1-25. doi: 10.1016/0039-6028(67)90062-3.
  3. Marks, L.D. Experimental studies of small particle structures / L.D. Marks // Reports on Progress in Physics. - 1994. - V. 57. - I. 6. - P. 603-649. doi: 10.1088/0034-4885/57/6/002.
  4. Самсонов, В.М. Нанотермодинамика на примере металлических наночастиц / В.М. Самсонов, С.А. Васильев, И.В. Талызин, К.К. Небывалова, В.В. Пуйтов // Журнал физической химии. - 2023. - Т. 97. - № 8. С. 1167-1177. doi: 10.31857/S004445372308023X.
  5. Balleto, F. Reentrant morphology transition in the growth of free silver nanoclusters / F. Baletto, C. Mottet, R. Ferrando // Physical Review Letters. - 2000. - V. 84. - I. 24. - P. 5544-5547. doi: 10.1103/PhysRevLett.84.5544.
  6. Киттель, Ч. Введение в физику твердого тела / Ч. Киттель; пер. с 4-го американского издания А.А. Гусева, А. В. Пахнева; под общей редакцией А.А. Гусева. - М.: Наука, Главная редакция физико-математической литературы, 1978. - 790 с.
  7. Hall, B.D. Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction / B.D. Hall, M. Flüeli, R. Monot, J.-P. Borel // Physical Review B. - 1991. - V. 43. - I. 5. - P. 3906-3917. doi: 10.1103/PhysRevB.43.3906.
  8. Reinhard, D. Size-dependent icosahedral-to-fcc structure change confirmed in unsupported nanometer-sized copper clusters / D. Reinhard, B.D. Hall, P. Berthoud, S. Valkealahti, R. Monot // Physical Review Letters. - 1997. - V. 79. - I. 8. - P. 1459-1462. doi: 10.1103/PhysRevLett.79.1459.
  9. Ino, S. Stability of multiply-twinned particles / S. Ino // Journal of the Physical Society of Japan. - 1969. - V. 27. - № 4. - P. 941-953. doi: 10.1143/JPSJ.27.941.
  10. Marks, L.D. Surface structure and energetics of multiply twinned particles / L.D. Marks // Philosophical Magazine A. - 1984. - V. 49. - I. 1. - P. 81-93. doi: 10.1080/01418618408233431.
  11. Valkealahti, S. Instability of cuboctahedral copper clusters / S. Valkealahti, M. Manninen // Physical Review B. - 1992. - V. 45. - I. 16. - P. 9459-9462. doi: 10.1103/PhysRevB.45.9459.
  12. Myasnichenko, V.S. Molecular dynamic investigation of size-dependent surface energy of icosahedral copper nanoparticles at different temperature / V.S. Myasnichenko, M. Razavi, M. Outokesh, N.Yu. Sdobnyakov, M.D. Starostenkov // Letters on Materials. - 2016. - V. 6. - I. 4. - P. 266-270. doi: 10.22226/2410-3535-2016-4-266-270.
  13. Foster, D.M. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters / D.M. Foster, R. Ferrando, R.E. Palmer // Nature Communications. - 2018. - V. 9. - Art. № 1323. - 6. p. doi: 10.1038/s41467-018-03794-9.
  14. Гафнер, С.Л. Структурные переходы в малых кластерах никеля / С.Л. Гафнер, Л.В. Редель, Ж.В. Головенько и др. // Письма в Журнал экспериментальной и теоретической физики. - 2009. - Т. 89. - Вып. 7. - С. 425-431.
  15. Cleri, F. Tight-binding potentials for transition metals and alloys / F. Cleri, V. Rosato // Physical Review B. - 1993. - V. 48. - I. 1. - P. 22-33. doi: 10.1103/PhysRevB.48.22.
  16. Thompson, A.P. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales / A.P. Thompson, H.M. Aktulga, R. Berger et al. // Computer Physics Communications. - 2022. - V. 271. - Art. № 108171. - 34 p. doi: 10.1016/j.cpc.2021.108171.
  17. Samsonov, V.M. On surface pre-melting of metallic nanoparticles: molecular dynamics study / V.M. Samsonov, I.V. Talyzin, S.A. Vasilyev, V.V. Puytov, A.A. Romanov // Journal of Nanoparticle Research. - 2023. - V. 25. - I. 6. - Art. № 105. - 15 p. doi: 10.1007/s11051-023-05743-0.
  18. Adams, J.B. Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method /j.B. Adams, S.M. Foiles, W.G. Wolfer // Journal of Materials Research. - 1989. - V. 4. - I. 1. - P. 102-112. doi: 10.1557/JMR.1989.0102.
  19. Foiles, S.M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys / S.M. Foiles, M.I. Baskes, M.S. Daw // Physical Review B. - 1986. - V. 33. - I. 12. - P. 7983-7991. doi: 10.1103/PhysRevB.33.7983.
  20. Polak, W.Z. Efficiency in identification of internal structure in simulated monoatomic clusters: Comparison between common neighbor analysis and coordination polyhedron method / W.Z. Polak // Computational Materials Science. - 2022. - V. 201. - Art. № 110882. - 8 p. doi: 10.1016/j.commatsci.2021.110882.
  21. Qi, Y. Melting and crystallization in Ni nanoclusters: The mesoscale regime / Y. Qi, T. Çağin, W.L. Johnson, W.A. Goddard III // The Journal of Chemical Physics. - 2001. - V. 115. - I. 1. - P. 385-394. doi: 10.1063/1.1373664.
  22. Samsonov, V.M. Molecular dynamics study of the melting and crystallization of nanoparticles / V.M. Samsonov, S.S. Kharechkin, S.L. Gafner, L.V. Redel', Yu.Ya. Gafner // Crystallography Reports. - 2009. - V. 54. - I. 3. - P. 526-531. doi: 10.1134/S1063774509030250.
  23. Samsonov, V.M.Comparative molecular dynamics study of melting and crystallization of Ni and Au nanoclusters / V.M. Samsonov, A.G. Bembel, O.V. Shakulo, S.A. Vasilyev // Crystallography Reports. - 2014. - V. 59. - I. 4. - P. 580-585. doi: 10.1134/S1063774514040166.
  24. Сдобняков, Н.Ю. Изучение термодинамических и структурных характеристик наночастиц металлов в процессах плавления и кристаллизации: теория и компьютерное моделирование: монография / Н.Ю. Сдобняков, Д.Н. Соколов. - Тверь: Тверcкой государственный университет, 2018. - 176 с.
  25. Пуйтов, В.В. Разработка и апробирование алгоритмов генерации начальных конфигураций изомеров металлических нанокластеров / В.В. Пуйтов, И.В. Талызин, С.А. Васильев, В.М. Самсонов // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2020. - Вып. 12. - С. 474-485. doi: 10.26456/pcascnn/2020.12.474.
  26. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool / A. Stukowski // Modelling and Simulation in Materials Science and Engineering. - 2009. - V. 18. - I. 1. - Art. № 015012. - 7 p. doi: 10.1088/0965-0393/18/1/015012.
  27. Beloshapka, V. Dynamics of transformation of small fcc crystal into icosahedral nanoparticles / V. Beloshapka, A. Melnick, V. Soolshenko, D. Pimenov // Journal of Nano- and Electronic Physics. - 2021. - V. 13. - № 5. Art. № 05021. - 5. p. doi: 10.21272/jnep.13(5).05021.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).