Determination of the size limit of stability of the fcc phase of Ag nanoparticles

Cover Page

Cite item

Full Text

Abstract

The main objective of the study was to find the size limit at which silver nanoclusters with different initial morphology spontaneously change their structure to the fcc structure inherent to the bulk silver. For this purpose, we have examined the data of high-resolution electron microscopy of the initial and annealed silver nanoparticles formed on a carbon substrate by vacuum-thermal evaporation. It was found that as a result of annealing, the number of small nanoparticles (D<3,5 nm) approximately twice decreased, and the proportion of nanoparticles with icosahedral and decahedral facets increased approximately 1,5 times. To evaluate the obtained results by the molecular dynamics method based on the second moment approximation of the tight-binding potential, an additional study of the stability limits of structural modifications of silver nanoclusters of similar diameters (D=2-10 nm) was carried out in order to determine the size limit of a possible thermally induced structural transition from the initial amorphous morphology to the fcc phase. The obtained data were compared with the results for Ag nanoparticles with the initial fcc structure. It was shown that the size limit at which the nanoclusters changed their initial amorphous structure to the fcc structure corresponds to a particle diameter of 8-10 nm.

About the authors

Yury Ya. Gafner

Khakass State University

Email: ygafner@khsu.ru
Dr. Sc., Professor, Chief of the Department of Mathematics, Physics and Information Technology

Daria A. Ryzhkova

Khakass State University

4th year postgraduate student, Senior Lecturer, Department of Mathematics, Physics and Information Technology

Svetlana L. Gafner

Khakass State University

Dr. Sc., Docent, Professor of the Department of Mathematics, Physics and Information Technology

Arina A. Cherepovskaya

Khakass State University

2nd year graduate student of specialty «Modern digital technologies in education»

References

  1. Velázquez, J.J. Energy level diagram and kinetics of luminescence of Ag nanoclusters dispersed in a glass host. /j.J. Velázquez, V.K. Tikhomirov, L.F. Chibotaru et al. // Optics Express. - 2012. - V. 20. - I. 12. - Р. 13582-13591. doi: 10.1364/OE.20.013582.
  2. Dubkov, S.V. SERS in red spectrum region through array of Ag-Cu composite nanoparticles formed by vacuum-thermal evaporation. / S.V. Dubkov, A.I. Savitskiy, A.Yu Trifonov et al. // Optical Materials: X. - 2020. - V. 7. - Art. № 100055. - 19 p. doi: 10.1016/j.omx.2020.100055.
  3. Grishina, Ya.S. Electron microscopy study of silver nanoparticles obtained by thermal evaporation / Ya.S. Grishina, N.I. Borgardt, R.L. Volkov, D.G. Gromov, A.I. Savitskiy // Semiconductors. - 2019. - V. 53. - I. 15. - P. 1986-1991. doi: 10.1134/S1063782619150089.
  4. Cleri, F. Tight binding potentials for transition metals and alloys / F. Cleri, V. Rosato // Physical Review B. - 1993. - V. 48. - I. 1. - Р. 22-33. doi: 10.1103/PhysRevB.48.22.
  5. Gafner, Y. On measuring the structure stability for small silver clusters to use them in plasmonics / Y. Gafner, S. Gafner, D. Bashkova // Journal of Nanoparticle Research. - 2019. - V. 21. - Art. № 243. - 15 p. doi: 10.1007/s11051-019-4691-2.
  6. Редель, Л.В. Роль "магических" чисел при формировании структуры в малых нанокластерах серебра / Л.В. Редель, Ю.Я. Гафнер, С.Л. Гафнер // Физика твердого тела. - 2015. - Т. 57. - Вып. 15. - С. 2061-2070.
  7. Гафнер, С.Л. Структурные переходы в малых кластерах никеля / С.Л. Гафнер, Л.В. Редель, Ж.В. Головенько и др. // Письма в журнал экспериментальной и теоретической физики. - 2009. - Т. 89. - Вып. 7. - С. 425-431.
  8. Гафнер, С.Л. Моделирование процессов структурообразования нанокластеров меди в рамках потенциала сильной связи / С.Л. Гафнер, Л.В. Редель, Ю.Я. Гафнер // Журнал экспериментальной и теоретической физики. - 2009. - Т. 135. - Вып. 5. - С. 899-916.
  9. Гафнер, Ю.Я. Формирование структуры нанокластеров золота при процессах кристаллизации / Ю.Я. Гафнер, Ж.В. Головенько, С.Л. Гафнер // Журнал экспериментальной и теоретической физики. - 2013. - Т. 143. - Вып. 2. - С. 288-305.
  10. Honeycutt, J.D. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters /j.D. Honeycutt, H.C. Andersen // The Journal of Physical Chemistry. - 1987. - V. 91. - I. 19. - P. 4950-4963. doi: 10.1021/j100303a014
  11. Рыжкова, Д.А. Молекулярно-динамическое исследование размерной границы перехода нанокластеров серебра с начальной аморфной структурой к ГЦК фазе / Д.А. Рыжкова, С.Л. Гафнер, Ю.Я. Гафнер, А.А. Череповская // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 490-498. doi: 10.26456/pcascnn/2022.14.490.
  12. Baletto, F. Structural properties of sub-nanometer metallic clusters / F. Baletto // Journal of Physics: Condensed Matter. - 2019. - V. 31. - Art. № 113001. - 42 p. doi: 10.1088/1361-648X/aaf989.
  13. Pavan, L. Metallic nanoparticles meet metadynamics / L. Pavan, K. Rossi, F. Baletto // Journal of Chemical Physics. - 2015. - V. 143. - I. 18. - P. 184304-1-184304-6. doi: 10.1063/1.4935272.
  14. Gould, A. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au-Ag bimetallic nanoclusters / A. Gould, A.J. Logsdail, C.R.A. Catlow // The Journal of Physical Chemistry C. - 2015. - V. 119. - I. 1. - P. 23685-23697. doi: 10.1021/acs.jpcc.5b03577.
  15. Gould, A.L. Controlling structural transitions in AuAg nanoparticles through precise compositional design / A.L. Gould, K. Rossi, C.R.A. Catlow et al. // The Journal of Physical Chemistry Letters. - 2016. - V. 7. - I. 21. - P. 4414-4419. doi: 10.1021/acs.jpclett.6b02181
  16. Rossi, K. The effect of size and composition on structural transitions in monometallic nanoparticles / K. Rossi, L. Pavan, YY. Soon, F. Baletto // The European Physical Journal B. - 2018. - V. 91. - Art. № 33. - 8 p. doi: 10.1140/epjb/e2017-80281-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).