Equation of interphase adsorption equilibrium

Cover Page

Cite item

Full Text

Abstract

Despite intensive development of adsorption science, there are still many unresolved issues. In this regard, at least one of them can be highlighted in the present paper. As early as 1927 [1], it was established that solids change their dimensions during adsorption of gases and vapors. However, the development of research in this area was hampered for a long time by the lack of theoretical concepts and great experimental and methodological difficulties. Meanwhile, the study of the deformation of solids during adsorption is of great importance both for the development of adsorption thermodynamics and for practical purposes. In the theory of adsorption, a method for describing adsorption equilibrium is widely used, in which the role of a solid is reduced only to the creation of an adsorption force field in which the adsorbate is located. The adsorbent itself is considered thermodynamically inert. It is obvious that the analysis of a two-component system is replaced by consideration of only one component - the adsorbate. However, the very fact of the existence of deformation of a solid during adsorption directly indicates the insufficient rigor of the description of adsorption equilibrium in the language of concepts of the one-component system, as was accepted in deriving, for example, the classical Henry, Langmuir or BET (Brunauer-Emmett-Teller) equations. Therefore, the greatest value is represented by those works in which attempts are made to construct a general theory of adsorption (and absorption), including phenomena on deformable adsorbents (absorbents). From such a general equation, as special cases, at least the known classical adsorption equations should follow. In work [2], such an equation was proposed and it was shown that from it, as special cases, follow the classical Henry, Langmuir and BET equations with constants that have a clear physical meaning. Thus, the constant in the Henry equation is determined by temperature, the specific surface area adsorbent, size of adsorbate molecules, molar mass of adsorbate, and the isosteric heat of adsorption (the energy of interaction of the adsorbate molecules with the adsorbent surface). In the derived particular BET equation, in contrast to the classical version, a clear dependence of the equation constant on specific physical characteristics of the adsorption system is indicated for the first time. It is determined by the concentration of adsorbate molecules in the liquid phase at temperature under consideration, concentration of adsorbate molecules during the formation of a dense monolayer on the adsorbent surface, the energy of interaction of adsorbate molecules with the adsorbent surface, and the heat of condensation. The approach presented in this work can serve as a basis for modeling a wide variety of adsorption and absorption phenomena, including adsorption on microporous adsorbents and deformable bodies. The present work continues the studies conducted. It is shown that particular cases of the equation presented in [2] are the well-known classical Fowler-Guggenheim, Temkin equations.

About the authors

Andrey V. Tvardovsky

Tver State Technical University

Email: tvardovskiy@tstu.tver.ru
Dr. Sc., Professor, Rector

References

  1. Meehan, F.T. The expansion of charcoal on sorption of carbon dioxide / F.T. Meehan // Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. - 1927. - V. 115. - I. 770. - P. 199-207. doi: 10.1098/rspa.1927.0085.
  2. Твардовский, А.В. Общий феноменологический подход для описания адсорбционных и абсорбционных равновесий / А.В. Твардовский // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 321-330. doi: 10.26456/pcascnn/2022.14.321.
  3. Sanchez-Varretti, F.O. Adsorption of interacting binary mixtures on heterogeneous surfaces: theory, Monte Carlo simulations and experimental results / F.O. Sanchez-Varretti, F.M. Bulnes, A.J. Ramirez-Pasto // Adsorption. - 2019. - V. 25. - I. 7. - P. 1317-1328. doi: 10.1007/s10450-019-00093-7.
  4. Pérez-Chávez, N.A. Molecular theory of glyphosate adsorption to pH-responsive polymer layers / N.A. Pérez-Chávez, A.G. Albesa, G.S. Longo // Adsorption. - 2019. - V. 25. - I. 7. - P. 1307-1316. doi: 10.1007/s10450-019-00091-9.
  5. Abbasi, A. Adsorption of CO and NO molecules on Al, P and Si embedded MoS2 nanosheets investigated by DFT calculations / A. Abbasi, A. Abdelrasoul, J.J. Sardroodi // Adsorption. - 2019. - V. 25. - I. 5. - P. 1001-1017. doi: 10.1007/s10450-019-00121-6.
  6. Sladekova, K. The e ect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks / K. Sladekova, C. Campbell, C. Grant et al. // Adsorption. - 2021. - V. 27. - I. 6. - P. 995-1000. doi: 10.1007/s10450-021-00301-3.
  7. Sastre, G.J. Surface barriers and symmetry of adsorption and desorption processes / G.J. Sastre, J. Kärger, D.M.Ruthven // Adsorption. - 2021. - V. 27. - I. 5 (Topical Issue: Diffusion in Nanoporous Solids. - V. 2). - P. 777-785. doi: 10.1007/s10450-020-00260-1.
  8. Van Assche, T.R.C. An explicit multicomponent adsorption isotherm model: accounting for the size-e ect for components with Langmuir adsorption behavior / T.R.C. Van Assche, G.V. Baron, J.F.M. Denaye // Adsorption. - 2018. - V. 24. - I. 6. - P. 517-530. doi: 10.1007/s10450-018-9962-1.
  9. Dastani, N. Adsorption of Ampyra anticancer drug on the graphene and functionalized graphene as template materials with high efficient carrier / N. Dastani, A. Arab, H. Raissi // Adsorption. - 2020. - V. 26. - I. 6. - P. 879-893. doi: 10.1007/s10450-019-00142-1.
  10. Avijegon, G. Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13X beads from 273 to 333 K and pressures to 900 kPa / G. Avijegon, G. Xiao, G. Li, E.F. May // Adsorption. - 2018. - V. 24. - I. 4. - P. 381-392. doi: 10.1007/s10450-018-9952-3.
  11. Ghasemi, A.S. A DFT study of penicillamine adsorption over pure and Al-doped C60 fullerene / A.S. Ghasemi, F. Mashhadban, F. Ravari // Adsorption. - 2018. - V. 24. - I. 5. - P. 471-480. doi: 10.1007/s10450-018-9960-3.
  12. Berezovsky, V.Computational study of the CO adsorption and di usion in zeolites: validating the Reed-Ehrlich model / V. Berezovsky, S. Öberg // Adsorption. - 2018. - V. 24. - I. 4. - P. 403-413. doi: 10.1007/s10450-018-9948-z.
  13. Henry, D.C. A kinetic theory of adsorption / D.C. Henry // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Series 6. - 1922. - V. 44. - I. 262. - P. 689-705. doi: 10.1080/14786441108634035.
  14. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum / I. Langmuir // Journal of the American Chemical Society. - 1918. - V. 40. - I. 9. - P. 1361-1403. doi: 10.1021/ja02242a004.
  15. Brunauer, S. Adsorption of gases in multimolecular layers / S. Brunauer, P.H. Emmett, E. Teller // Journal of the American Chemical Society. - 1938. - V. 60. - I. 2. - P. 309-319. doi: 10.1021/ja01269a023.
  16. Fowler, R.H. Statistical thermodynamics / R.H. Fowler, E.A. Guggenheim. - Cambridge: The University Press, 1939. - X, 693 p.
  17. Темкин, М.И. Адсорбционное равновесие и кинетика процессов на неоднородных поверхностях при взаимодействии адсорбированных молекул / М.И. Темкин // Журнал физической химии. - 1941. - Т. 15. - № 3. - С. 296-332.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).