Variational quantum algorithm for low-dimensional systems in the Pauli basis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In the last decade, variational quantum algorithms implemented on modern quantum computers have successfully solved practical problems of optimization, quantum chemistry, and machine learning. We propose new variational quantum algorithm based on a Monte Carlo scheme that uses a random selection of the generators for a unitary transformation, and also uses optimization of the objective functional employing the annealing or Metropolis-Hastings algorithm. The states of the quantum system in the form of a density operator and its model Hamiltonian are represented by expansions in the Pauli basis. In the algorithm, the state of the system is changed by means of a random choice of the Pauli generator that determines the unitary transformation of the state. The efficiency of the annealing algorithm directly depends on the equiprobable choice of the transition from one state to the second, so the work uses a compromise version of the uniform distribution of operators on the SU (2 n ) group - the direct product of the SU (2) group, where n is the number of qubits in the system. The random choice of a single-qubit operator (consistent with the Haar measure on SU (2)) is implemented in Hopf coordinates on the group manifold (the three-sphere). The results of testing the algorithm show that it can be effective for low-dimensional systems.

Авторлар туралы

Dmitriy Golov

Tver State University

1st year PhD student of the General Mathematics and Mathematical Physics Department

Nikita Petrov

Tver State University

1st year PhD student of the General Mathematics and Mathematical Physics Department

Alexander Tsirulev

Tver State University

Email: tsirulev.an@tversu.ru
Dr. Sc., Professor of the Department of General Mathematics and Mathematical Physics

Әдебиет тізімі

  1. Peruzzo, A. A variational eigenvalue solver on a photonic quantum processor / A. Peruzzo, J. McClean, P. Shadbolt et al. // Nature Communications. - 2014. - V. 5. - Art. № 4213. - 7 p. doi: 10.1038/ncomms5213.
  2. Китаев, А. Классические и квантовые вычисления / А. Китаев, А. Шень, Ю. Вялый. - М.: МЦМНО, 1999. - 192 с.
  3. Нильсен, М. Квантовые вычисления и квантовая информация / М. Нильсен, И. Чанг Пер.; пер. с англ. М.Н. Вялого, П.М. Островского. - Μ.: Мир, 2006. - 824 с.
  4. Ryabinkin, I.G. Method: a systematic approach to quantum chemistry on a quantum computer / I.G. Ryabinkin, T.-C. Yen, S.N. Genin, A.F. Izmaylov // Journal of Chemical Theory and Computation. - 2018. - V. 14. - I. 12. - P. 6317-6326. doi: 10.1021/acs.jctc.8b00932.
  5. McClean, J.R. The theory of variational hybrid quantum-classical algorithms /j.R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik // New Journal of Physics. - 2016. - V. 18. - Art. № 023023. - 22 p. doi: 10.1088/1367-2630/18/2/023023.
  6. Chitambar, E. Quantum resource theories / E. Chitambar, G. Gour // Reviews of Modern Physics. - 2019. - V. 91. - I. 2. - P. 025001-1-025001-48. doi: 10.1103/RevModPhys.91.025001.
  7. Tsirulev, A.N. A geometric view on quantum tensor networks / A.N. Tsirulev // European Physical Journal Web of Conferences. - 2020. - V. 226. - Art. № 02022. - 4 p. doi: 10.1051/epjconf/202022602022.
  8. Nikonov, V.V. Pauli basis formalism in quantum computations / V.V. Nikonov, A.N. Tsirulev // Mathematical modelling and geometry. - 2020. - V. 8. - № 3. - P. 1-14. doi: 10.26456/mmg/2020-831.
  9. Taube, A.G. New perspectives on unitary coupled-cluster theory / A.G. Taube, R.J. Bartlett // International Journal of Quantum Chemistry. - 2006. - V. 106. - I. 15. - P. 3393-3401. doi: 10.1002/qua.21198.
  10. Андре, Э. Моделирование запутанных состояний в кластерах кубитов / Э. Андре, А.Н. Цирулев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2022. - Вып. 14. - С. 342-351. doi: 10.26456/pcascnn/2022.14.342.
  11. Андре, Э. Модель трехкубитного кластера в термостате / Э. Андре, А.Н. Цирулев // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 223-230. doi: 10.26456/pcascnn/2023.15.223.
  12. Ingber, L. Simulated annealing: practice versus theory / L. Ingber // Mathematical and Computer Modelling. - 1993. - V. 18. - I. 11. - P. 29-57. doi: 10.1016/0895-7177(93)90204-C.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).