Magnetic properties and magnetic reversal processes of the Sm-Gd-Zr-Co-Cu-Fe alloys

Cover Page

Cite item

Full Text

Abstract

The results of experimental studies of magnetic properties and magnetization reversal processes of a series of alloys Sm-Gd-Zr-Co-Cu-Fe are presented. The studied samples were subjected to prolonged isothermal annealing for 24 hours, which made it possible to achieve the formation of a certain nanostructure that affects the hysteresis properties of the material and allows to achieve a high coercivity state. According to the magnetic measurements data obtained by the method of a vibrating magnetometer, the hysteresis loops are constructed, the dependence of the saturation magnetization, and the coercive force on chemical composition, and the values of the temperature coefficient of magnetization change depending on the relative content of Sm and Gd are determined. It is shown that the substitution of a part of samarium atoms for gadolinium atoms increases the effect of the mechanism of irreversible rotation of the spontaneous magnetization vector on the remagnetization of samples. Application of the studied samples in various devices puts serious demands on the stability of their magnetic properties at high temperatures. Our researches allow us to conclude that compounds with gadolinium concentration x= 0,5 have the greatest coercive force, and compounds with gadolinium concentration in the range x= 0,5-0,6 have the highest temperature stability.

About the authors

Pavel A. Rakunov

Tver State University

Email: pavel.rakunov@mail.ru
3rd year postgraduate student, Assistant, Condensed Matter Physic Department

Marina B. Lyakhova

Tver State University

Ph. D., Docent, Senior Researcher, Condensed Matter Physics Department

Elena M. Semenova

Tver State University

Ph. D., Docent, Condensed Matter Physics Department

Alexey Yu. Karpenkov

Tver State University

Ph. D., Docent, Head of Condensed Matter Physics Department

References

  1. Coey, J.M.D. Perspective and prospects for rare earth permanent magnets /j.M.D. Coey // Engineering. - 2020. - V. 6. - I. 2. - P. 119-131. doi: 10.1016/j.eng.2018.11.034.
  2. Jha, A.R. Rare earth materials: properties and applications / A.R. Jha. - Boca Raton, London, New York: CRC Press, 2014. - 371 p. doi: 10.1201/b17045.
  3. Liu, S. Sm-Co high-temperature permanent magnet materials / S. Liu // Chinese Physics B. - 2019. - V. 28. - I. 1. - P. 017501-1-017501-20. doi: 10.1088/1674-1056/28/1/017501.
  4. Golovnia, O.A. Hard magnetic properties and the features of nanostructure of high-temperature Sm-Co-Fe-Cu-Zr magnet with abnormal temperature dependence of coercivity / O.A. Golovnia, A.G. Popov, N.V. Mushnikov et al. // Nanomaterials. - 2023. - V. 13. - I. 13. - Art. №. 1899. - 14 p. doi: 10.3390/nano13131899.
  5. Duerrschnabel, M. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets / M. Duerrschnabel, M. Yi, K. Uestuener et al. // Nature communications. - 2017. - V. 8. - I. 1. - Art. №. 54. - 7 p. doi: 10.1038/s41467-017-00059-9.
  6. Semenova, E.M. Micro- and nanostructures of RCoCuFeZr heterogeneous alloys with high temperature stability / E.M. Semenova, M.B. Lyakhova, A. Ivanova, M.N. Ulyanov // Materials Science Forum. - 2016. - V. 845. - P. 46-49. doi: 10.4028/ href='www.scientific.net/MSF.845.46' target='_blank'>www.scientific.net/MSF.845.46.
  7. Horiuchi, Y. Influence of intermediate-heat treatment on the structure and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnets / Y. Horiuchi, M. Hagiwara, M. Endo, N. Sanada, S. Sakurada // Journal of Applied Physics. - 2015. - V. 117. - I. 17. - Art. №. 17C704. - 4 p. doi: 10.1063/1.4906757.
  8. Sepehri-Amin, H. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets / H. Sepehri-Amin, J. Thielsch, J. Fischbacher et al. // Acta Materialia. - 2017. - V. 126. - P. 1-10. doi: 10.1016/j.actamat.2016.12.050.
  9. Song, K. Revealing on metallurgical behavior of iron-rich Sm(Co0.65Fe0.26Cu0.07Zr0.02)7.8 sintered magnets / K. Song, W. Sun, H. Chen et al. // AIP Advances. - 2017. - V. 7. - I. 5. - Art. №. 056238. - 7 p. doi: 10.1063/1.4978464.
  10. Dormidontov, A.G. Structure of alloys for (Sm,Zr)(Co,Cu,Fe)z permanent magnets: first level of heterogeneity / A.G. Dormidontov, N.B. Kolchugina, N.A. Dormidontov, Yu.V. Milov // Materials. - 2020. - V. 13. - I. 17. - Art. №. 3893. - 18 p. doi: 10.3390/ma13173893.
  11. Jiang, C.B. Recent progress in high temperature permanent magnetic materials / C.B. Jiang, S.Z. An // Rare Metals. - 2013. - V. 32. - I. 5. - P. 431-440. doi: 10.1007/s12598-013-0162-6.
  12. Lyakhova, M.B. High-temperature behavior of hard magnetic alloys (R,Zr)(Co,Cu,Fe)z (R= Sm, Gd) / M.B. Lyakhova, E.M. Semenova, R.P. Ivanov // Metal Science and Heat Treatment. - 2015. - V. 56. - I. 11-12. - P. 602-608. doi: 10.1007/s11041-015-9807-4.
  13. Ляхова, М.Б. Структура и магнитные свойства сплавов (R,Zr)(Co,Cu, Fe)Z (R = Sm, Gd) / М.Б. Ляхова, Е.М. Семенова, П.А. Ракунов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2023. - Вып. 15. - С. 169-177. doi: 10.26456/pcascnn/2023.15.169.
  14. Semenova, E.M. Mechanisms of Magnetic Hysteresis in Heterogeneous Gd-Zr-Co-Cu-Fe Alloys / E.M. Semenova, M.B. Lyakhova, P.A. Rakunov, A.Yu. Karpenkov, Yu.V. Konyukhov // Bulletin of the Russian Academy of Sciences: Physics. - 2024. - V. 88. - I. 5. - P. 802-808. doi: 10.1134/S1062873824706639.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).