Adsorption of barium on surface of GaN(0001)
- Autores: Lapushkin M.N.1
-
Afiliações:
- Ioffe Institute
- Edição: Nº 16 (2024)
- Páginas: 210-218
- Seção: Experimental studies of nanoparticles, nanosystems and nanomaterials
- URL: https://journals.rcsi.science/2226-4442/article/view/319427
- DOI: https://doi.org/10.26456/pcascnn/2024.16.210
- EDN: https://elibrary.ru/WAHOIS
- ID: 319427
Citar
Texto integral
Resumo
For the first time, the adsorption of barium atoms on the surface of the (0001) face of GaN was calculated using the density functional method. The 2D GaN layer was modeled using a GaN (0001) 2×2 supercell containing 10 GaN bilayers. The electron density of state and the adsorption energy of the Ba atom were calculated for five adsorption sites of the Ba atom: in the hollow position, in the bridge position between the surface Ga ( N ) atoms, and above the surface Ga ( N ) atom. There was one Ba atom per 4 surface Ga atoms in the first GaN bilayer. The adsorption of the barium atom above the surface N atom was most preferable. The adsorption energy was 2,96 eV. The adsorption of Ba atoms resulted in an insignificant reconstruction of the GaN surface: the maximum shift of the Ga ( N ) atoms did not exceed 0,11 Å. The adsorption of Ba resulted in the formation of a surface band below the Fermi level.
Palavras-chave
Sobre autores
Mikhail Lapushkin
Ioffe Institute
Email: lapushkin@ms.ioffe.ru
Ph. D., Docent, Senior Researcher
Bibliografia
- Qian, X. Phonon-engineered extreme thermal conductivity materials / X. Qian, J. Zhou, G.Chen // Nature Materials. - 2021. - V. 20. - I. 9. - P. 1188-1202. doi: 10.1038/s41563-021-00918-3.
- Buffolo, M. Defects and reliability of GaN-based LEDs: review and perspectives / M. Buffolo, A. Caria, F. Piva et al. // Physica Status Solidi (a). - 2022. - V. 219. - I. 8. - Art № 2100727. - 22 p. doi: 10.1002/pssa.202100727.
- Emon, A.I. A review of high-speed GaN power modules: state of the art, challenges, and solutions / A.I. Emon, A.B. Mirza, J. Kaplun et al. // IEEE Journal of Emerging and Selected Topics in Power Electronics. - 2022. - V. 11. - I. 3. - P. 2707-2729. doi: 10.1109/JESTPE.2022.3232265.
- Sun, R. GaN power integration for high frequency and high efficiency power applications: a review / R. Sun, J. Lai, W. Chen, B. Zhang // IEEE Access. - 2020. - V. 8. - P. 15529-15542. doi: 10.1109/ACCESS.2020.2967027.
- Kozak, J.P. Stability, reliability, and robustness of GaN power devices: a review /j.P. Kozak, R. Zhang, M. Porter et al. // IEEE Transactions on Power Electronics. - 2023. - V. 38. - I. 7. - P. 8442-8471. doi: 10.1109/TPEL.2023.3266365.
- Zhang, Y. Recent advances on gan-based micro-leds / Y. Zhang, R. Xu, Q. Kang et al. // Micromachines. - 2023. - V. 14. - I. 5. - Art. № 991. - 19 p. doi: 10.3390/mi14050991.
- Behringer, M. Blue high-power laser diodes-beam sources for novel applications: overview and outlook / M. Behringer, H. König // PhotonicsViews. - 2020. - V. 17. - I. 2. - P. 60-63. doi: 10.1002/phvs.202000018.
- Bermudez, V.M. The fundamental surface science of wurtzite gallium nitride / V.M. Bermudez // Surface Science Reports. - 2017. - V. 72. - I. 4. - P. 147-315. doi: 10.1016/j.surfrep.2017.05.001.
- Northrup, J.E. Incorporation of beryllium on the clean and indium-terminated GaN (0001) surface /j.E. Northrup // Applied Physics Letters. - 2001. - V. 78. - I. 19. - P. 2855-2857. doi: 10.1063/1.1368369.
- Lyons, J.L. First-principles theory of acceptors in nitride semiconductors /j.L. Lyons, A. Alkauskas, A. Janotti, C.G. Van de Walle // Physica Status Solidi (b). - 2015. - V. 252. - I. 5. - P. 900-908. doi: 10.1016/j.cossms.2024.101148.
- Reshchikov, M.A. Photoluminescence from vacancy-containing defects in GaN / M.A. Reshchikov // Physica Status Solidi (a). - 2023. - V. 220. - I. 10. - Art. № 2200402. -8 p. doi: 10.1002/pssa.202200402.
- Sun, Q. Energetics of Mg incorporation at GaN (0001) and Ga N (000 ) surfaces / Q. Sun, A. Selloni, T.H. Myers et al. // Physical Review B. - 2006. - V. 73. - I. 15. - Art. № 155337. - 9 p. doi: 10.1103/PhysRevB.73.155337.
- Al Balushi, Z.Y. Two-dimensional gallium nitride realized via graphene encapsulation / Z.Y. Al Balushi, K. Wang, R. K. Ghosh et al. // Nature Materials. - 2016. - V. 15. - I. 11. - P. 1166-1171. doi: 10.1038/nmat4742.
- Cui, Z. Tuning the optoelectronic properties of graphene-like GaN via adsorption for enhanced optoelectronic applications / Z. Cui, X.Wang, M. Li et al. // Solid State Communications. - 2019. - V. 296. - P. 26-31. doi: 10.1016/j.ssc.2019.04.010.
- Бенеманская, Г.В. Модификация электронной структуры и формирование аккумуляционного слоя ультратонких интерфейсов Ва/n-GaN и Ba/n-AlGaN / Г. В. Бенеманская, С. Н. Тимошнев, С. В. Иванов и др. // Журнал экспериментальной и теоретической физики. - 2014. - Т. 145. - Вып. 4. - С. 684-696.
- Бенеманская, Г.В. Аккумуляционный зарядовый слой на поверхности n-GaN (0001) с ультратонкими Ва покрытиями / Г. В. Бенеманская, Г. Э. Франк-Каменецкая // Письма в Журнал экспериментальной и теоретической физики. - 2005. - Т. 81. - Вып. 10. - С. 642-645
- Hintze, F. Ba3Ga3N5: a novel host lattice for Eu2+-doped luminescent materials with unexpected nitridogallate substructure / F. Hintze, F. Hummel, P. J. Schmidt et al. // Chemistry of Materials. - 2012. - V. 24. - I. 2. - P. 402-407. doi: 10.1021/cm203323u.
- Giannozzi, P. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials / P. Giannozzi, S. Baroni, N. Bonini // Journal of Physics: Condensed Matter. - 2009. - V. 21. - №. 39. - Art. № 395502. - 19 p. doi: 10.1088/0953- 8984/21/39/395502.
- Perdew, J.P. Self-interaction correction to density-functional approximations for many-electron systems /j.P. Perdew, A. Zunger // Physical Review B. - 1981. - V. 23. - I. 10. - P. 5048-5079. doi: 10.1103/PhysRevB.23.5048.
- Nishihara, S. BURAI 1.3 A GUI of Quantum ESPRESSO / S. Nishihara. - Режим доступа: www.url: https://nisihara.wixsite.com/burai. - 16.07.2024.
Arquivos suplementares
