X-ray diffraction studies of the growth process of thin films of high-entropy TiNbZrTaHfCu alloy in situ using synchrotron radiation

Cover Page

Cite item

Full Text

Abstract

High-entropy alloys based on refractory metals, possessing an unusual combination of physical, mechanical, tribological, electrophysical, etc. properties, can be recommended for use in various fields of industry and medicine. The aim of the work is to study the growth process of high-entropy alloys films of the Ti-Nb-Zr-Ta-Hf-Cu system in real time by X-ray phase analysis using synchrotron radiation. Experiments on the deposition of multielement metal films were carried out on the VEIPS-1 setup developed at the Institute of high current electronics Siberian branch of the Russian academy of sciences for studying the processes of the film and coating formation on a synchrotron radiation source. The process of in situ thin film structure formation with high time resolution was studied using a synchrotron radiation source - the VEPP-3 electron storage ring, The Institute of nuclear physics, Siberian branch of the Russian academy of sciences. It is shown that the deposition of Ti-Nb-Zr-Ta-Hf-Cu plasma on a HG40 substrate is accompanied by the formation of an amorphous-crystalline state represented by phases of the composition (presumably) Ti-Nb-Zr-Ta-Hf-Cu , TiZr, NbZr , and CuTiZr , formed at different stages of film deposition. The main phase is the Ti-Nb-Zr-Ta-Hf-Cu composition.

About the authors

Yuri F. Ivanov

Institute of High Current Electronics SB RAS

Email: yufi55@mail.ru
Dr. Sc., Chief Researcher, Laboratory of Plasma Emission Electronics

Yuri Kh. Akhmadeev

Institute of High Current Electronics SB RAS

Ph. D., Head of the Laboratory of Plasma Emission Electronics

Anatoly A. Klopotov

Tomsk State University of Architecture and Building

Dr. Sc., Professor, Department of Applied Mechanics and Materials Science

Nikita A. Prokopenko

Institute of High Current Electronics SB RAS

Junior Researcher, Laboratory of Plasma Emission Electronics

Elizaveta A. Petrikova

Institute of High Current Electronics SB RAS

Junior Researcher, Laboratory of Plasma Emission Electronics

Olga V. Krysina

Institute of High Current Electronics SB RAS

Ph. D., Researcher, Laboratory of Plasma Emission Electronics

Vladimir V. Shugurov

Institute of High Current Electronics SB RAS

Researcher, Laboratory of Plasma Emission Electronics

Alexander N. Shmakov

Institute of High Current Electronics SB RAS; Boreskov Institute of Catalysis SB RAS

Dr. Sc., Chief Researcher, Boreskov Institute of Catalysis of the Siberian Branch of the RAS

V. Yu Lavrov

Tomsk State University of Architecture and Building

2nd year graduate student, Department of Applied Mechanics and Materials Science

References

  1. Cantor, B. Microstructural development in equiatomic multicomponent alloys / B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent // Materials Science and Engineering: A. - 2004. - V. 375-377. - P. 213-218. doi: 10.1016/j.msea.2003.10.257.
  2. Yeh, J.-W. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes /j.W. Yeh, S.-K. Chen, S.-J. Lin et al. // Advanced Engineering Materials. - 2004. - V.6. - I. 5. - P. 299-303. doi: 10.1002/adem.200300567.
  3. Senkov, O.N. Development and exploration of refractory high entropy alloys - a review / O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie // Journal of Materials Research. - 2018. - V. 33. - I. 19. - P. 3092-3128. doi: 10.1557/jmr.2018.153.
  4. Senkov, O.N. Refractory high-entropy alloys / O.N. Senkov, G.B. Wilks, D.B. Miracle et al. // Intermetallics. - 2010. - V. 18. - I. 9. - P. 1758-1765. doi: 10.1016/j.intermet.2010.05.014.
  5. Schuh, B. Thermodynamic stability and mechanical properties of nanocrystalline high-entropy alloys / B. Schuh // Doctoral Thesis. - Leoben: Erich Schmid Institute of Materials Science, 2018. - XII+126 p.
  6. Senkov, O.N. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy / O.N. Senkov, J.M. Scott, S.V. Senkova et al. // Journal of Materials Science. - 2012. - V. 47. - I. 9. - P. 4062-4074. doi: 10.1007/s10853-012-6260-2.
  7. Senkov, O.N. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy / O.N. Senkov, J.M. Scott, S.V. Senkova et al. // Journal of Alloys and Compounds. - 2011. - V. 509. - I. 20. - P. 6043-6048. doi: 10.1016/j.jallcom.2011.02.171.
  8. Coury, F.G. Solid-solution strengthening in refractory high entropy alloys / F.G. Coury, M. Kaufman, A.J. Clarke // Acta Materialia. - 2019. - V. 175. - P. 66-81. doi: 10.1016/j.actamat.2019.06.006.
  9. Jayaraj, J. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium /j. Jayaraj, C. Thinaharan, S. Ningshen et al. // Intermetallics. - 2017. - V. 89. - P. 123-132. doi: 10.1016/j.intermet.2017.06.002.
  10. Manea, C.A. New HfNbTaTiZr high-entropy alloy coatings produced by electrospark deposition with high corrosion resistance / C.A. Manea, M. Sohaciu, R. Stefănoiu et al. // Materials. - 2021. - V. 14. - I. 15. - Art. № 4333. - 10 p. doi: 10.3390/ma14154333.
  11. Cheng, Z. Irradiation effects in high-entropy alloys and their applications / Z. Cheng, J. Sun, X. Gao et al. // Journal of Alloys and Compounds. - 2023. - V. 930. - Art. № 166768. - P.71. doi: 10.1016/j.jallcom.2022.166768.
  12. Slobodyan, M. Recent advances and outstanding challenges for implementation of high entropy alloys as structural materials / M. Slobodyan, E. Pesterev, A. Markov // Materials Today Communications. - 2023. - V. 36. - Art.№ 106422. - 82 p. doi: 10.1016/j.mtcomm.2023.106422.
  13. Koželj, P. Discovery of a superconducting high-entropy alloy / P. Koželj, S. Vortnik, A. Jelen et al. // Physical Review Letters. - 2014. - V. 113. - I. 10. - P. 107001-1-107001-5. doi: 10.1103/PhysRevLett.113.107001.
  14. Zýka, J. Structure and mechanical properties of TaNbHfZrTi high entropy alloy /j. Zýka, J. Málek, Z. Pala et al. // 24th International Conference on Metallurgy and Materials (Metal 2015), June 3-5, 2015, Brno, Czech Republic: conference paper. - Ostrava: TANGER Ltd., 2015. - P. 1687-1692.
  15. Eisenbarth, E. Biocompatibility of stabilizing elements of titanium alloys / E. Eisenbarth, D. Velten, M. Müller et al. // Biomaterials. - 2004. - V. 25. - I. 26. - P. 5705-5713. doi: 10.1016/j.biomaterials.2004.01.021.
  16. Grandin, H.M. A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants / H.M. Grandin, S. Berner, M. Dard // Materials. - 2012. - V. 5. - I. 8. - P. 1348-1360. doi: 10.3390/ma5081348.
  17. Biesiekierski, A. A new look at biomedical Ti-based shape memory alloys / A. Biesiekierski, J. Wang, M.A.-H. Gepreel, C. Wen // Acta Biomaterialia. - 2012. - V.8. - I. 5. - P. 1661-1669. doi: 10.1016/j.actbio.2012.01.018.
  18. Alven, S. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials / S. Alven, B. Buyana, Z. Feketshane, B.A. Aderibigbe // Pharmaceutics. - 2021. - V. 13. - I. 7. - Art. № 964. - 18 p. doi: 10.3390/pharmaceutics13070964.
  19. Lee, D. Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications / D. Lee, S.J. Lee, J.-H. Moon et al. // Journal of Industrial and Engineering Chemistry. - 2018. - V. 66. - P. 196-202. doi: 10.1016/j.jiec.2018.05.030.
  20. Canales, D.A. Fabrication and assessment of bifunctional electrospun poly(l-lactic acid) scaffolds with bioglass and zinc oxide nanoparticles for bone tissue engineering / D.A. Canales, N. Piñones, M. Saavedra et al. // International Journal of Biological Macromolecules. - 2023. - V. 228. - P. 78-88. doi: 10.1016/j.ijbiomac.2022.12.195.
  21. Khan, A. ur R. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles / A. ur R. Khan, K. Huang, Z. Jinzhong et al. // Journal of Materials Chemistry B. - 2021. - V. 9. - I. 5. - P. 1452-1465. doi: 10.1039/D0TB02822C.
  22. Al-Saeedi, S.I. Antibacterial potency, cell viability and morphological implications of copper oxide nanoparticles encapsulated into cellulose acetate nanofibrous scaffolds / S.I. Al-Saeedi, N.S. Al-Kadhi, G.M. Al-Senani et al. // International Journal of Biological Macromolecules. - 2021. - V. 182. - P. 464-471. doi: 10.1016/j.ijbiomac.2021.04.013.
  23. Hashmi, M. Copper oxide (CuO) loaded polyacrylonitrile (PAN) nanofiber membranes for antimicrobial breath mask applications / M. Hashmi, S. Ullah, I.S. Kim // Current Research in Biotechnology. - 2019. - V. 1. - P. 1-10. doi: 10.1016/j.crbiot.2019.07.001.
  24. Rai, M. Silver nanoparticles as a new generation of antimicrobials / M. Rai, A. Yadav, A. Gade // Biotechnology Advances. - 2009. - V.27. - I. 1. - P. 76-83. doi: 10.1016/j.biotechadv.2008.09.002.
  25. Wang, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future / L. Wang, C. Hu, L. Shao // International Journal of Nanomedicine. - 2017. - V. 12. - P. 1227-1249. doi: 10.2147/IJN.S121956.
  26. Lenis, J.A. Structure, morphology, adhesion and in vitro biological evaluation of antibacterial multi-layer HA-Ag-SiO2-TiN-Ti coatings obtained by RF magnetron sputtering for biomedical applications /j.A. Lenis, P. Rico, J.L.G. Ribelles et al. // Materials Science and Engineering: C. - 2020. - V. 116. - Art. № 111268. - 50 p. doi: 10.1016/j.msec.2020.111268.
  27. He, X. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium / X. He, G. Zhang, X. Wang et al. // Ceramics International. - 2017. - V. 43. - No. 18. - P. 16185-16195. doi: 10.1016/j.ceramint.2017.08.196.
  28. Heidenau, F. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization / F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer // Journal of Materials Science: Materials in Medicine. - 2005. - V. 16. - I. 10. - P. 883-888. doi: 10.1007/s10856-005-4422-3.
  29. Ivanov, Yu.F. Structure and properties of a HfNbTaTiZr cathode and a coating formed through its vacuum arc evaporation / Yu.F. Ivanov, Yu.H. Akhmadeev, N.A. Prokopenko et al. // Bulletin of the Russian Academy of Sciences: Physics. - 2023. - V. 87. - I. 2. suppl. - P. S250-S256. doi: 10.1134/S1062873823704701.
  30. Иванов, Ю.Ф. Особенности структурно-фазового состояния пленки на основе высокоэнтропийного сплава AlNbTiZiCu, синтезированной путем осаждения многоэлементной металлической плазмы / Ю.Ф. Иванов, Ю.А. Абзаев, А.А. Клопотов и др. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. - 2021. - Вып. 13. - С. 693-707. doi: 10.26456/pcascnn/2021.13.693.
  31. Binary alloy phase diagrams; ed. by T.B. Massalski: in 2 volumes. - Ohio: ASM International, Materials Park, 1986. - XIII+2224 p.
  32. Khegai, I.K. Examination of the Ti-Zr-Nb system / I.K. Khegai, P.B. Budberg // Russian Metallurgy (Metally). - 1971. - № 1. - P. 141-144.
  33. Arroyave, R. Kaufman L. Thermodynamic assessment of the Cu-Ti-Zr system / R. Arroyave, T.W. Eagar, L. Kaufman // Journal of Alloys and Compounds. - 2003. - V. 351. - I. 1-2. - P. 158-170. doi: 10.1016/S0925-8388(02)01035-6.
  34. Григорович, В.К. Периодический закон Менделеева и электронное строение металлов: К 100-летию со дня открытия периодического закона / В.К. Григорович; ред. А. М. Самарин. - М.: Наука, 1966. - 287 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).