ULTRASONIC APPLICATION FOR SURFACE LAYER MODIFYING IN PARTS PRODUCED BY ADDITIVE TECHNOLOGIES

Cover Page

Full Text

Abstract

A number of works devoted to the technological heredity of products obtained by additive technologies are analyzed. One of the main disadvantages of additive manufacturing methods for plastic and metal objects is the high surface roughness caused by the layering technique. Based on the analysis of the sources, the directions of development of ultrasonic post-treatment of products have been determined. It can significantly reduce surface roughness. Studies have been conducted on the finishing of plastic products in a solvent evaporation obtained by ultrasonic spraying. The technique makes it possible to adjust the size of the droplets and the speed of their movement by changing the modes of ultrasonic treatment. Evaporating treatment schemes for products of different sizes are proposed. As a result of experimental studies, it has been established that evaporating treatment of a solvent obtained by ultrasonic spraying allows significant reduction of the surface roughness. Various types of ultrasonic treatment have been proposed for parts obtained by selective laser melting to improve the surface quality of products. Comparative studies have been conducted on the effects of cavitation-erosion and cavitation-abrasive treatment, as well as ultrasonic surface plastic deformation aimed at reducing surface roughness. It was revealed that all mentioned types of ultrasonic treatment contribute to surface roughness decrease in the following ways: cavitation-erosion by 33 %, cavitation-abrasive by 43 %, ultrasonic surface plastic deformation by 52 %.

About the authors

Vyachyeslav Mikhaylovich Prikhodko

The Moscow State Technical University - MADI

Email: prikhodko@madi.ru
corresponding member Russian Academy of Sciences, professor, doctor of technical sciences

Ravil Islamovich Nigmetzyanov

The Moscow State Technical University - MADI

Email: lefmo@yandex.ru
candidate of technical sciences

Sergey Konstantinovich Sundukov

The Moscow State Technical University - MADI

Email: sergey-lefmo@yandex.ru
candidate of technical sciences

Dmitriy Sergeevich Fatyukhin

The Moscow State Technical University - MADI

Email: mitriy2@yandex.ru
department “Construction Materials Technology”, professor, doctor of technical sciences

References

  1. Чуканов А.Н. Определение коэффициента анизотропии и скорости локальной деформации в аддитивных сплавах / А.Н. Чуканов, В.А. Коротков, А.А. Яковенко // Известия ТулГУ. Технические науки. 2024. № 3. URL: https://cyberleninka.ru/article/n/opredelenie-koeffitsienta-anizotropii-i-skorosti-lokalnoy-deformatsii-v-additivnyh-splavah (дата обращения: 08.04.2025).
  2. Сундуков С.К. Ультразвуковые технологии в процессах получения неразъёмных соединений. М.: Общество с ограниченной ответственностью «Техполиграфцентр», 2023. 269 с. ISBN 978-5-94385-209-1.
  3. Bai Y. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting // Journal of Materials Processing Technology. 2022. Vol. 299. P. 118. doi: 10.1016/j.jmatprotec.2021.117328
  4. Li C. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing // Optics & Laser Technlogy. 2023. Vol. 162. P. 10. doi: 10.1016/j.optlastec.2023.109246
  5. Shi X. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting // Optics & Laser Technology. 2020. Vol. 132. P. 106. doi: 10.1016/j.optlastec.2020.106471
  6. Giorleo L. Ti surface laser polishing: effect of laser path and assist gas // Procedia CIRP. 2015. Vol. 33. P. 446−451. doi: 10.1016/j.procir.2015.06.102
  7. Kumar A.Y. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing // Additive Manufacturing. 2018. Vol. 24. P. 115−124. doi: 10.1016/j.addma.2018.09.021
  8. Popov V.V Effect of hot isostatic pressure treatment on the electron-beam melted Ti-6Al-4V specimens // Procedia Manufacturing. 2018. Vol. 21. P. 125−132. doi: 10.1016/j.promfg.2018.02.102
  9. Lyczkowska-Widlak E. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing // Archives of Civil and Mechanical Engineering. 2014. Vol. 14 (4). P.586−594. doi: 10.1016/j.acme.2014.03.001
  10. Jain S. Electrochemical polishing of selective laser melted Inconel 718 // Procedia Manufacturing. 2019. Vol. 34. P. 239−246. doi: 10.1016/j.promfg.2019.06.145
  11. Slegers S. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating // Coatings. 2017. Vol. 7. P. 208. doi: 10.3390/coatings7120208
  12. Hosseinzadeh A. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys // Journal of Manufacturing Processes. 2021. Vol. 68 (2). P. 788−795. doi: 10.1016/j.jmapro.2021.05.070
  13. Nigmetzyanov R.I. Additive Manufacturing with Ultrasound // Russian Engineering Research. 2017. Vol. 37 (12). P. 1070−1073. doi: 10.3103/S1068798X17120140.
  14. Sundukov S.K. Ultrasonic Vibration Mechanism in Making Permanent Joints // Steel in Translation. 2024. Vol. 54 (1). P. 10−15. doi: 10.3103/S0967091224700190.
  15. Grigoriev S.N. et al. Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties // Metals. 2020. Vol. 10 (11). P. 1540. doi: 10.3390/met10111540.
  16. Jeon J.H. et al. Effect of electropolishing on ultrasonic cavitation in hybrid post-processing of additively manufactured metal surfaces // Journal of Manufacturing Processes. 2024. Vol. 120. P. 703−711. doi: 10.1016/j.jmapro.2024.04.092
  17. Wang Q. et al. Rotary ultrasonic-assisted abrasive flow finishing and its fundamental performance in Al6061 machining // The International Journal of Advanced Manufacturing Technology. 2021. Vol. 113. P. 473−481. doi: 10.1007/s00170-021-06666-7
  18. Приходько В.М. Современные направления ультразвуковой жидкостной обработки в машиностроении / В. М. Приходько, Р. И. Нигметзянов, С. К. Сундуков, Д. С. Фатюхин // Наукоемкие технологии в машиностроении. 2021. № 8 (122). С. 12−17. doi: 10.30987/2223-4608-2021-8-12-17. EDN YFXYYC.
  19. Teramachi A. Improving the surface integrity of additive-manufactured metal parts by ultrasonic vibration-assisted burnishing // Journal of Micro-and Nano-Manufacturing. 2019. Vol. 7 (2). P. 24. doi: 10.1115/1.4043344
  20. Нигметзянов Р.И. Способы ультразвукового поверхностного пластического деформирования / Р. И. Нигметзянов, В. М. Приходько, С. К. Сундуков [и др.] // Наукоемкие технологии в машиностроении. 2022. № 7 (133). С. 33−39. doi: 10.30987/2223-4608-2022-1-7-33-39. EDN EGTURS.
  21. Nigmetzyanov R.I. et al. Additive Manufacturing with Ultrasound // Russian Engineering Research. 2017. Vol. 37 (12). P. 1070−1073. doi: 10.3103/S1068798X17120140.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).