TECHNOLOGY FACTORS EFFECT ON THE QUALITY PARAMETERS OF PRODUCTS MANUFACTURED BY THE WAAM-TECHNIQUE BASED ON GMAW (GAS-METAL-ARC-WELDING)

Cover Page

Cite item

Full Text

Abstract

The object of research in the article is a welding procedure of additive manufacturing based on automatic wire electrode arc welding in a shielding gas environment– DED-W / WAAM-GMAW. The article presents the classification of DED technologies and their comparative characteristics. The advantages of WAAM processes based on GMAW are illustrated. The controlling factors of WAAM-GMA technologies that influence quality parameters of manufactured products and the output parameters of the process are specified for the evaluation of engineering capabilities in WAAM-GMAW. The mechanisms of metal transfer during its deposition onto the formed blank part are viewed. Comparative characteristics of transfer modes are presented, and their effect on the course of GMAW processes is evaluated. The influence of such factors as the polarity of the electrode wire connection, the current strength and voltage of the welding arc power source, the wire feed rate, the speed of movement of the welding blowpipe (welding bath), shielding gas composition on the product quality parameters and WOL is viewed. The aspects of path modeling of the shaping movements of the welding blowpipe in the WAAM-GMAW procedure affecting the thermal processes of WOL, the geometric accuracy and shape of the blank part, and the mechanical properties of the work material are described. The disadvantages of the method related to the possible defects in products, such as high surface roughness and undulation, anisotropy of the mechanical properties of the material, metal overflows on the side surface of the blank, residual stresses, porosity, cracks and delamination, are focused on. The causes of defects are listed. An analysis of the proneness of various materials to various defects is presented. Information is provided on the degree of influence of some of the controlling technology factors of the WAAM-GMAW procedure on the WOL parameters and the generated product quality parameters. A number of solutions have been proposed to improve the reliability of forming the quality parameters for products obtained by WAAM-GMAW methods.

About the authors

Shenbo Li

Xiamen University of Technology

Email: hit4057@xmut.edu.cn

Zhishu Lin

Xiamen University of Technology

Andrey Viktorovich Kirichek

Bryansk State Technical University

Email: avkbgtu@gmail.com
professor, doctor of technical sciences

Maksim Nikolaevich Nagorkin

Bryansk State Technical University

Email: nagorkin@tu-bryansk.ru
Department of Technosphere Safety, docent, doctor of technical sciences

Maksim Aleksandrovich Novikov

Email: novikovmax14@yandex.ru
graduate student of architecture

References

  1. Трубашевский Д.С. Аддитивные зарисовки, или решения для тех, кто не хочет продолжать терять деньги. Воронеж : Умное Производство, 2021. 203 с.
  2. Li Y., Su C., Zhu J. Comprehensive review of wire arc additive manufacturing: Hardware system, physical process, monitoring, property characterization, application and future prospects // Results in Engineering. 2022. Vol. 13. 100330. doi: 10.1016/j.rineng.2021.100330.
  3. Srivastava M., Rathee S., Tiwari A., Dongre M. Wire arc additive manufacturing of metals: A review on processes, materials and their behaviour // Materials Chemistry and Physics. 2023. Vol. 294. 126988. doi: 10.1016/j.matchemphys.2022.126988.
  4. Kesarwani1 S., Yuvaraj N., Niranjan M. S. CMT‑based WAAM: a comprehensive review of process parameters, their effects, challenges, and future scope // Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2024. Vol. 46. 699. doi: 10.1007/s40430-024-05276-0.
  5. Singh S.R., Khanna P. Wire arc additive manufacturing (WAAM): a new process to shape engineering materials // Materials Today Proc.. 2021. Vol. 44. Pp. 118−128. doi: 10.1016/j.matpr.2020.08.030.
  6. Tomar Bunty, Shiva S., Nath Tameshwer. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances // Materials today communications. 2022. Vol. 31.103739. doi: 10.1016/j.mtcomm.2022.103739.
  7. Suvranshu P., Susanta K. S. Gas metal arc welding based additive manufacturing – a review // CIRP Journal of Manufacturing Science and Technology. 2021. Vol. 33. Pp. 398−442. doi: 10.1016/j.cirpj.2021.04.010.
  8. Jafari D., Vaneker T.H.J., Gibson I. Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts // Materials and Design. 2021. Vol. 202. 109471. DOI: 0.1016/j.matdes.2021.109471.
  9. Wang C., Ding J., Williams S. Process control methods in cold wire gas metal arc additive manufacturing // Metals. 2023. Vol. 13 (8). 1334. doi: 10.3390/met13081334
  10. Rajendra Prasad, Yuvaraj N., Vipin A review on wire arc additive manufacturing based on cold metal transfer // Materials and manufacturing processes. 2024. Vol. 39 (10). Pp. 1315−1341. doi: 10.1080/10426914.2024.2323441
  11. Yildiz A.S., Davut K., Koc B., Yilmaz O. Wire arc additive manufacturing of high-strength low alloy steels: study of process parameters and their influence on the bead geometry and mechanical characteristics // The International journal of advanced manufacturing technology. 2020. Vol. 108. Pp. 3391−3404. doi: 10.1007/s00170-020-05482-9.
  12. Juric I., Garasic I., Busic M., Kozuh Z. Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured Inconel 625 // JOM. 2019. Vol. 71 (2). doi: 10.1007/s11837-018 3151-2.
  13. Li S., Zhang L.J., Ning J., Wang X., Zhang G.F., Zhang J.X., Na S.J., Fatemeh B. Comparative Study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas // Additive manufacturing. 2020. Vol. 34.101206. doi: 10.1016/j.addma.2020.101206.
  14. Киричек А.В., Сергеев А.Г., Федонина С.О., Петрешин Д.И. Технологическое обеспечение параметров качества синтезируемой WAAM-методом детали управлением траекторией движения фидстока // Транспортное машиностроение. 2022. № 4 (44). С. 60-68. doi: 10.30987/2782-5957-2022-4-60-68.
  15. Nguyen L., Buhl J., Bambach M. Multi-bead Overlapping Models for Tool Path Generation in Wire-Arc Additive Manufacturing Processes // Procedia Manufacturing. 2020. Vol. 47. Pp. 1123–1128. doi: 10.1016/j.promfg.2020.04.129.
  16. Кузнецов М.А., Данилов В.И., Крампит М.А., Чинахов Д.А., Слободян М.С. Механические и трибологические свойства металлической стенки, выращенной электродуговым способом в среде защитных газов // Обработка металлов (технология, оборудование, инструменты). 2020. Т. 22, № 3. С. 18–32. doi: 10.17212/1994-6309-2020-22.3-18-32.
  17. Киричек А.В., Федонин О.Н., Федонина С.О., Сергеев А.Г. Сравнительная оценка влияния технологий аддитивного синтеза на количество и размер пор в изделии // Наукоемкие технологии в машиностроении. 2022, № 5 (131). С. 20−26. doi: 10.30987/2223-4608-2022-5-20-26.
  18. Киричек А.В., Баринов С.В., Яшин А.В., Федонина С.О., Андросов К.Ю. Разработка и верификация моделей материалов при моделировании процессов волнового деформационного упрочнения и аддитивного синтеза (3DMP) // Тракторы и сельхозмашины, 2024. Том 91. № 6. С. 611−618. doi: 10.17816/0321-4443-637300.
  19. Киричек А.В., Баринов С.В., Греченева А.В. Расчет температурных полей на основе конечно-элементной модели процесса аддитивного синтеза изделия // Прикладная информатика. 2024. Т. 19. № 6. С. 113–128. doi: 10.37791/2687-0649-2024-19-6-113-128.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).