CARBON SHAPE TYPE AND HEAT TREATMENT EFFECT ON THE STRUCTURAL CHARACTERISTICS OF THE CARBIDE PHASE IN THE COMPOSITE MATERIAL AL-5%CU-10%TIC OBTAINED BY THE SHS METHOD
- 作者: Luc A.R.1
-
隶属关系:
- Samara State Technical University
- 期: 编号 3 (165) (2025)
- 页面: 3-10
- 栏目: Materials science in mechanical engineering
- URL: https://journals.rcsi.science/2223-4608/article/view/287513
- DOI: https://doi.org/10.30987/2223-4608-2025-3-3-10
- ID: 287513
如何引用文章
全文:
详细
The paper presents the analysis of carbon shape type effect (carbon black and multilayer carbon nanotubes) on the morphology and distribution of the titanium carbide phase in the composition of a composite material obtained by self-propagating high-temperature synthesis Al-5%Cu-10%TiC, further subjected to heat treatment as thermohardening and artificial ageing. It is shown that both carbon modifications make it possible to synthesize a highly dispersed carbide phase with dimensions up to 800 nm from its inception. However, during the subsequent heat treatment of samples obtained on the basis of a charge with nanotubes, a decrease in the dispersion of titanium carbide particles to 2 microns and an increase in their degree of agglomeration is observed, resulting in a decrease in the hardening effect of ageing. Based on the analysis of the mechanism of carbide formation, it is suggested that as a result of high-speed capillary spreading of titanium over the surface of carbon particles within synthesis, the formed particles inherit the geometry of the original carbon shape. In this regard, when using carbon black, the synthesis of rounded titanium carbide particles is advantageous, and in the case of nanotubes it is cylindrical particles that make the better of. Differences in morphology, in turn, determine the varying degree of self-diffusion during subsequent heating, which contributes to more significant changes in the dispersion and distribution of the carbide phase in samples synthesized on the basis of nanotubes. The obtained results lead to a conclusion that the type of carbon shape has a significant effect on the structural characteristics of the carbide phase and give reason to recommend the use of carbon black, which is characterized by a lower cost.
作者简介
Al'fiya Luc
Samara State Technical University
Email: alya_luts@mail.ru
ORCID iD: 0000-0001-7889-9931
Department of Metallurgy, powder metallurgy, nanomaterials, docent, candidate of technical sciences
参考
- Kar A., Sharma A., Kumar S. A Critical Review on Recent Advancements in Aluminium-Based Metal Matrix Composites // Crystals, 2024. 14. Р. 412. doi: 10.3390/cryst14050412
- Das B., Roy S., Rai R.N., Saha S.C. Studies on effect of cutting parameters on surface of Al-Cu-TiC MMCs: An Artificial Neural Network Approach // Procedia Computer Science, 2015. Vol. 45. P. 745–752. doi: 10.1016/j.procs.2015.03.145
- Amosov A.P., Luts A.R., Latukhin E.I., Rybakov A.D., Novikov V.A., Shipilov S.I. Effect of alloying on the structure and properties of particle reinforced aluminum matrix composites Al/TiC produced by SHS in aluminum melt // Journal of Physics: Conference Series, 2018. 1115. 042002. doi: 10.1088/1742-6596/1115/4/042002
- Левашов Е.А., Рогачев А.С., Юхвид В.И., Боровинская И.П. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза: М.: Издательство «БИНОМ», 1999. 176 с.
- Cochepin B., Gauthier V., Vrel D., Dubois S. Crystal growth of TiC grains during SHS reactions // Journal of Crystal Growth, 2007. 304 (2). P. 481–486. doi: 10.1016/j.jcrysgro.2007.02.018
- Амосов А.П., Луц А.Р., Латухин Е.И., Ермошкин А.А. Применение процессов СВС для получения in-situ алюмоматричных композиционных материалов, дискретно армированных наноразмерными керамическими частицами: обзор // Изв. Вузов. Цветная металлургия, 2016. №1. С. 39–49
- Амосов А.П., Луц А.Р., Рыбаков А.Д., Латухин Е.И. Применение различных порошковых форм углерода для армирования алюмоматричных композиционных материалов углеродом и карбидом титана // Обзор. Известия вузов. Цветная металлургия, 2020. № 4. С. 44–64.
- Tian W.S., Zhao Q.L., Zhao C.J., Qiu F., Jiang Q.C. The Dry Sliding Wear Properties of Nano-Sized TiCp /Al-Cu Composites at Elevated Temperatures // Materials, 2017. 10. Р. 939. doi: 10.3390/ma10080939
- ТУ 2166-001-02069289-2007. Материал углеродный наноструктурный «ТАУНИТ». Технические условия. Введ. с 01.04.2008. Тамбов: Тамбовский ИТЦ машиностроения, 01.04.2008. 21 с.
- Prusov E.S., Shabaldin I.V., Deev V.B. Quantitative characterization of the microstructure of in situ aluminum matrix composites // Journal of Physics: Conference Series, 2021. 2131 (4). P. 042040. doi: 10.1088/1742-6596/2131/4/042040
- Левашов Е.А., Рогачев А.С., Курбаткина В.В., Максимов Ю.М., Юхвид В.И. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза. М.: Дом МИСиС, 2011. 377 с.
- Rybakov A.D., Luts A.R., Latukhin E.I., Amosov A.P. Carbon form influence on combustion synthesis of titanium carbide // AIP Conference Proceedings, 2020. 2304. 020030. doi: 10.1063/5.0034549.
- Колокольцев С.Н. Углеродные материалы. Свойства, технологии, применения. Долгопрудный: Издательский Дом «Интеллект», 2012. 296 c.
- Физические явления в ультрадисперсных средах / И.Д. Морохов, Л.И. Трусов, В.Н. Лаповник. М.: Энергоатомиздат, 1984. 224 с.
补充文件

