THE USE OF NEW TYPES OF TECHNOLOGICAL EQUIPMENT IN NON-RIGID PLANE ALUMINUM PARTS PRODUCTION USING WAVE TECHNIQUES

Cover Page

Cite item

Full Text

Abstract

It has been suggested that wave technologies in non-rigid plane parts production should be used with the introduction of ultrasonic range vibrations into the shaping zone in combination with technological equipment, i.e. it is- a zero-base system. The traditional technique used in domestic enterprises implies a high probability of out-of-flat conditions and deformations due to the influence of technological residual stresses (TRS) in the process of stock removal or force stresses under plastic deformation of the part when fixing blanks. Using modern universal software systems such as Simulia Abaqus, ANSYS, etc., it was possible to determine the magnitude of deformations, aligment errors caused by residual stresses. The data obtained were used to calculate rational ways for fixing some typical non-rigid plane aluminum blanks on a technological equipment - a zero-based system of German production SCHUNKVERO–SAviation (VSA). The research was aimed at determining the manufacturability for the use of such equipment when making a particular non-rigid blank made of aluminum alloys and finding the most optimal way of its fixing. The estimated values of the TRS were determined by mechanical and X-ray methods. The calculations were performed using real parts of aircraft equipment of the "beam" type and blanks made of aluminum rolled products. The proposed method for determining the maximum amount of deformation of the workpiece under machining is applicable to the most optimal placement of the support and clamping modules of the zero-based system (VSA). In combination with a certain strategy of wave mechanical processing, it makes a practically complete compensation for deformations possible and allows obtaining a suitable product from the first presentation without performing an additional correction operation.

About the authors

Evgeny Stepanovich Kiselyov

ORCID iD: 0000-0002-1745-9016
candidate of technical sciences

Kirill Sergeevich Zhirukhin

Ulyanovsk State Technical University

ORCID iD: 0009-0008-4759-0710

References

  1. DMG Mori, оборудование серии ULTRASONIC [Электронный ресурс] // URL: https://en.dmgmori.com/products/machines/ultrasonic.
  2. Бергман Л. Ультразвук и его применение в науке и технике. М.: Издательство иностранной литературы, 1957. 728 с.
  3. Киселев Е.С., Назаров М.В. Особенности технологии изготовления нежестких корпусных деталей: монография. М.: РУСАЙНС, 2022. 218 с.
  4. Киселев Е.С., Благовский О.В. Управление формированием остаточных напряжений при изготовлении ответственных деталей. С. Петербург: Лань, 2020. 160 с.
  5. Khramov A., Semdyankin I., Kiselev E. Application of the Modern Stationary Work holding Systems for Increase Capacity and Quality of Non-Rigid Aircraft Parts // Matec web of Conferences 346, 03076 (2021)ICMTMTE 2021, https: /doi.org//10/1051/mateccof/2021 34 603076
  6. Yinfei YANG, Longxin FAN, Liang LI, Guolong ZHAO, Ning HAN, Xiaoyue LI, Hui TIAN, Ning HE. Energy principle and material removal sequence optimization method in machining of aircraft monolithic parts// Chinese Journal of Aeronautics. 2020, №33(10). P. 2770–2781.
  7. Robinson JS, Tanner DA, Truman CE, et al. Measurement and prediction of machining induced redistribution of residual stress in the aluminium alloy 7449// Exp Mech. 2011; № 51(6). P. 93–981.
  8. Masoudi S, Amini S, Saeidi E, et al. Effect of machininginduced residual stress on the distortion of thin-walled parts // Int J Adv Manuf Technol. 2015; № 76 (1–4). P. 597–608.
  9. Arrazola PJ, O¨ zel T, Umbrello D, et al. Recent advances in modelling of metal machining processes// CIRP Ann - Manuf Technol 2013; № 62 (2). P. 695–718.
  10. Dong HY, Ke YL. Study on machining deformation of aircraft monolithic component by FEM and experiment // Chinese J Aeronaut 2006; №19 (3). P. 54–247.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).