RESEARCH INTO THE POSSIBILITIES FOR THE IMPROVEMENT OF A NUMBER OF OPERATIONAL PROPERTIES USING WAVE STRAIN HARDENING

Cover Page

Full Text

Abstract

The paper states the need to identify a processing method through which increased operational properties in the work material can be obtained within a single process step. To solve the raised problem, the use of wave strain hardening (WSH) technology is proposed. The peculiarity of the technology lies in the possibility of simultaneous control of a number of technological parameters and the effect on the processed material of prolonged shock pulses characterized by the transfer of impact energy to the deformation site of more than 65%. Due to the presence of a large number of controlled process variables, the WSH allows fine adjusting of the uniformity of hardening and forming hardened areas at a depth of up to 15 mm. Due to the fine adjustment of the uniformity of hardening it becomes possible to avoid the formation of excessive cold work hardening of the surface layer and it makes great difference between WSH and other dynamic methods of surface plastic deformation, for example, stamping. With uneven hardening of WSH, solid and viscous regions take regular turns in the surface layer, forming a heterogeneous structure. The analysis of literature sources has shown that the presence of such areas in the surface layer makes it promising for purposes of operational properties improvement. The paper presents the results of experimental studies of the effect of the heterogeneous structure created by WSH on the operational properties: resistance to contact staining; cyclic strength under alternating loads, corrosion resistance. Laboratory studies of operational properties were carried out both using production equipment and specially designed facilities. The results obtained indicate the prospects of using WSH for operational properties increase and the existence of a "universal" operation mode.

About the authors

Sergey Vladimirovich Barinov

Vladimir State University

ORCID iD: 0000-0002-1341-446X

References

  1. Справочник технолога: справочник / А.Г. Суслов, В.Ф. Безъязычный, Б.М. Базров [и др.] ; под редакцией А. Г. Суслова. М.: Машиностроение, 2019. 800 с.
  2. Технологическое обеспечение и повышение эксплуатационных свойств деталей и их соединений / А. Г. Суслов [и др.] ; под общ. ред. А.Г. Суслова. М.: Машиностроение, 2006. 447 с.
  3. Патент №1782243 РФ. Способ термообработки изделий / А.П. Чейлях, Л.С. Малинов. Бюлл. № 46, 1992.
  4. Zheng, Z.J., Gao, Y., Gui, Y., Zhu, M. Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing Corrosion Science 54 2012: pp. 60– 67.
  5. Фундаментальные основы технологического обеспечения и повы­шения надежности изделий машиностроения / А.Г. Суслов, В.П. Федоров, О.А. Горленко [и др.]. М.: Издательство «Инновационное машиностроение», 2022. 552 с.
  6. Киричек А.В., Соловьев Д.Л., Лазуткин А.Г. Технология и оборудование статико-импульсной обработки поверхностным пластическим деформированием. Библиотека технолога. М.: Машиностроение, 2004. 288 с.
  7. Справочник по процессам поверхностного пластического деформирования / С А. Берберов, В.Ю. Блюменштейн, А.И. Болдырев [и др.]. Том 1. Иркутск: Иркутский национальный исследовательский технический университет, 2021. 504 с.
  8. Kirichek, A.V., Barinov S.V. Relationship Between Processing Parameters, Product Dimensions, and Wave Strain Hardening // Journal of Manufacturing Science and Engineering. Transactions of the American Society of Mechanical Engineers. 2022. Vol. 144. No 3. P. 034501. doi: 10.1115/1.4052008.
  9. Kirichek, A.V., Barinov S.V. Development of Parameters Describing Heterogeneous Hardened Structure / A.V. Kirichek, // Applied Mechanics and Materials. 2015. Vol. 756. P. 75–78. doi: 10.4028/ href='www.scientific.net/AMM.756.75' target='_blank'>www.scientific.net/AMM.756.75.
  10. Kirichek A.V, Kuzmenko A.P., Altukhov A.Y. et al. Dimensional effects in micro- and nanostructural changes in grain and intragrained structure of steel 45 at static-pulse treatment // Journal of Nano and Electronic Physics. 2015. Vol. 7. No 4. P. 04023. DOI 2077–6772/2015/7(4)04023(4)
  11. Kirichek, A. V., Barinov S.V. Study of Methods Relating to Increase of Contact Pitting Resistance in 45, 40H, 35HGSA Steel due to Development of Heterogeneous Structure Involving Mechanical Hardening Technique // Applied Mechanics and Materials. 2015. Vol. 756. P. 65–69. doi: 10.4028/ href='www.scientific.net/AMM.756.65' target='_blank'>www.scientific.net/AMM.756.65.
  12. Иванов Г.П., Картонова Л.В., Худошин А.А. Повышение износостойкости деталей созданием регулярной гетерогенной макроструктуры // Строительные и дорожные машины. 1997. № 1.. С. 33–34.
  13. Патент № 2090828 РФ. Противопульная гетерогенная броня из легированной стали для средств индивидуальной защиты и способ ее получения / Л.А. Кирель, О.М. Михайлова, С.А. Журавлев. Бюлл. № 26, 1997.
  14. Патент №2047661 РФ. Способ обработки резьбового изделия / В.С. Аванесов, Б.А. Авербух, Д.Г. Ашигян. Бюлл. № 6, 1995.
  15. Справочник по процессам поверхностного пластического деформирования / И.Р. Асланян, С.В. Баринов, В.Ф. Безъязычный [и др.]. Иркутск: Иркутский национальный исследовательский технический университет, 2022. 584 с.
  16. Nie M., Wang C. T., Qu M. et al. The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J Mater Sci 49, 2824–2831 (2014). https://doi.org/10.1007/s10853-013-7988-z.
  17. Соловей С.А. Современное состояние методов повышения коррозионной стойкости и сопротивления коррозионной усталости сварных соединений (обзор) // Автоматическая сварка. 2017. № 3. С. 51–58.
  18. Effect of surface and bulk plastic deformations on the corrosion resistance and corrosion fatigue performance of AISI316L / Aymen A. Ahmed et al. // Surface & coating Technology. 2014. Vol. 259. P. 448–455.
  19. Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI316L stainless steel / Suyitno et al. // International Journal of Minerals, Metallurgy and Materials. 2012. Vol. 19/ № 12. P. 1093–1099.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».