WEAR SIMULATION FOR ROLLING FRICTION WITH SLIDING MOVEMENT
- Authors: Shilov M.A.1, Korolev P.V.1
-
Affiliations:
- Ivanovo State Power Engineering University
- Issue: No 12 (162) (2024)
- Pages: 31-38
- Section: Surface layer quality, contact interaction, friction and wear of machine parts
- URL: https://journals.rcsi.science/2223-4608/article/view/280153
- DOI: https://doi.org/10.30987/2223-4608-2024-31-38
- ID: 280153
Cite item
Full Text
Abstract
The paper views mathematical and numerical models of wear of elastomeric materials developed by the authors in dead rolling with sliding movement. When developing a mathematical model, classical ideas about the kinematic characteristics of a massive elastomeric tire rolling along the abrasive surface of the disc were used. To describe the intensity of wear, the model uses the concepts of wear formulated by D. Archard and modified in relation to the studied objects - rubber-based resin elastics SRI-3 and SRS-30–ARKM-15 rubbers reinforced with carbon nanostructures. The numerical implementation of the mathematical model is performed in the Matlab software package. In order to simplify the numerical calculation, it was decided to switch the rolling slip model to the pure sliding model. The choice of the integration step in time allowed to stabilize the instability of the solution. Thus, the numerical model examined sliding of an elastomeric cylinder along the abrasive surface of the disk at a speed equal to the sliding speed and varying the normal load. The finite element method (FEM) was used as a numerical calculation method. At a fixed depth of indentation, the verification of the developed model was carried out. According to the simulation results, the dependences of the wear intensity of an elastomeric material on the magnitude of specific pressures are obtained. A comparative analysis of the simulation results and the data obtained experimentally make it possible to determine the difference at the level of 20 percent, which may be due to the limitations of the model when thermal characteristics of the materials are not taken into consideration. Thus, the developed model has demonstrated its viability and will be further refined upon taking into account the identified limitations.
Keywords
About the authors
Michael Aleksandrovich Shilov
Ivanovo State Power Engineering University
ORCID iD: 0000-0002-6445-3303
Pavel Vladimirovich Korolev
Ivanovo State Power Engineering University
ORCID iD: 0000-0003-2196-8136
References
- Шилов М.А., Фомин С.В., Бритова А.А., Королев П.В. Исследование физико-механических свойств резин, армированных углеродными наноструктурами // Жидкие кристаллы и их практическое использование, 2020. Т. 20. № 4. С. 93–98.
- Тобольский А. Свойства и структура полимеров. Москва: Химия, 1964. 322 c.
- Треолар Л. Физика упругости каучука. М.: Изд-во. иностр. лит-ры.,1953. 240 с.
- Ферри Дж. Вязкоупругие свойства полимеров. М.: Изд-во иностр. лит., 1963. 535 с.
- Королѐв П.В., Королева С.В., Шилов М.А. Программный комплекс «Model of sliding rubber» (свидетельство о регистрации программы для ЭВМ RU, 2022680449, от 2022667918. Заявка № 2022667918 от 30.09.2022.
- Шилов M.A., Маслов Л.Б., Королев П.В. Исследование износостойкости наноструктурированных эластомеров, используемых в пневматических шинах в качестве протекторов // Жидкие кристаллы и их практическое использование, 2018. Т. 18. № 1. С. 73–78.
- Шилов М.А., Смирнова А.И., Столбов Д.Н., Усольцева Н.В. Моделирование деформационных процессов углеродных нанотрубок // Жидкие кристаллы и их практическое использование, 2020. Т 20, № 1. С. 85–91.
- Королёв П.В., Шилов М.А. Моделирование износа эластомеров при качении с проскальзыванием // Надежность и долговечность машин и механизмов. Сборник материалов XIV Всероссийской научно-практической конференции. Иваново, 2023. С. 347–353.
- Flory P.J. Principles of Polymer Chemistry // Cornell University Press, New York. Ithaca: 1953. pp. 432–494.
- Hegadekatte V., Huber N., Kraft O. Finite element-based simulation of dry sliding wear // Modelling Simul. Mater. Sci. Eng. 13–57.
- Ajayan P.M., Schadler L.S., Braun P.V. Nanocomposite science and technology // Polym. Rev., 2007. 47. p. 217.
Supplementary files

