AUTOMATED TECHNOLOGICAL SUPPORT AND IMPROVEMENT OF THE OPERATIONAL PROPERTIES OF MACHINE PARTS

Cover Page

Cite item

Full Text

Abstract

The article outlines two directions of automated engineering support for the operational properties of machine parts (wear resistance, contact stiffness, etc.). The first direction is a traditional one. It's a two-stage provision of the operational properties of machine parts: in the first stage it is the dimensioning of working surfaces quality of the part that determines the required values of operational properties; in the second stage it is technological provision of quality parameters for the working surfaces of machine parts. The second new direction is a single – stage automated engineering support for the current operational properties of machine parts, which has been actively developed over the past 25 years at the Bryansk State Technical University. It is based on the theoretical and experimental dependences of the relationship between the operational properties of machine parts directly with the processing modes of their working surfaces. Various automated systems of scientific research have been developed to obtain experimental dependencies. An example of such an automated system for studying contact stiffness is given. Adaptive control systems used on various machines for high-performance engineering support aimed at obtaining the required quality parameters of the treated surfaces and their operational properties have been developed. When processing new materials and taking into account the absence of theoretical and experimental data, it is possible to use self-learning technological systems. An example of such a system used for a lathe, is given. All these developments contribute to the creation of the machines with artificial intelligence.

About the authors

Anatoliy Grigor'evich Suslov

Bryansk State Technical University; National Research Nuclear University “MEPhI”; Bauman Moscow State Technical University

Email: naukatm@yandex.ru
ORCID iD: 0000-0003-2566-2759
Scopus Author ID: 7102825210
ResearcherId: G-1042-2016
professor, doctor of technical sciences

Dmitriy Ivanovich Petreshin

Bryansk State Technical University

Email: dipetreshin@yandex.ru
ORCID iD: 0000-0001-9472-2167
SPIN-code: SPIN-код: 1176-9458
Scopus Author ID: 36024438700
ResearcherId: G-1326-2016
Educational-Scientific Technological Institute, professor, doctor of technical sciences

Mikhail Gennad'evich Shalygin

Bryansk State Technical University

Email: migshalygin@yandex.ru
ORCID iD: 0000-0002-8102-9918
SPIN-code: 4412-1448
Scopus Author ID: 57193351438
ResearcherId: N-7784-2016
Department of Turbine Engineering and Pipeline Transport Systems, docent, doctor of technical sciences

Viktor Aleksandrovich Khandozhko

Bryansk State Technical University

Email: atsys@tu-bryansk.ru
ORCID iD: 0000-0002-0604-8537
Department "Automated Technological Systems", docent, candidate of technical sciences

References

  1. Машиностроение. Энциклопедия. Ред. совет: К.В. Фролов и др. М.: Машиностроение. Надежность машин. Т. IV-3/ В.В. Клюев, В.В. Болотин, Ф.Р. Соснин и др.; под общ. ред. В.В. Клюева. 1998.
  2. Инженерия поверхности деталей / Колл. авторов; под ред. А.Г. Суслова. М.: Машиностроение, 2008. 320 с.
  3. Справочник технолога / под общ. ред. А.Г. Суслова. М.: Инновационное машиностроение, 2019. 800 с.
  4. Фундаментальные основы технологического обеспечения и повышения надежности изделий машиностроения / под ред. А.Г. Суслова. М.: Инновационное машиностроение, 2022. 552 с.
  5. Метод определения нормальной контактной жесткости неподвижных стыков. Методические рекомендации. М.: ВНИИМАШ. 1982.
  6. Наукоемкие технологии в машиностроении: [монография] / под ред. А. Г. Суслова. М.: Машиностроение, 2012. 527 с.
  7. Суслов А.Г., Петрешин Д.И. Автоматизированное обеспечение комплексного параметра качества поверхностного слоя Cx при механической обработке // Наукоемкие технологии в машиностроении. 2011. № 2 (02). С. 34–39.
  8. Петрешин Д.И. Применение лазерного оптического датчика для измерения высотных параметров шероховатости поверхности деталей машин в самообучающейся адаптивной технологической системе // Контроль. Диагностика. 2009. № 11. С. 53–57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».