Developing recommendations for implementing predictive maintenance in high-tech companies
- 作者: Yakovleva M.V.1, Shalina A.I.1
-
隶属关系:
- Bauman Moscow State Technical University
- 期: 卷 13, 编号 3 (2023)
- 页面: 1531-1550
- 栏目: Articles
- URL: https://journals.rcsi.science/2222-0372/article/view/146817
- DOI: https://doi.org/10.18334/vinec.13.3.118259
- ID: 146817
如何引用文章
详细
作者简介
Mariya Yakovleva
Bauman Moscow State Technical University
Email: mvyakovleva@bmstu.ru
к.э.н., старший преподаватель кафедры «Менеджмент»
Alina Shalina
Bauman Moscow State Technical University
Email: shalinaai@student.bmstu.ru
студентка кафедры «Менеджмент»
参考
- ГОСТ 34.602-2020. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы: принят Межгосударственным советом по стандартизации, метрологии и сертификации от 22.12.20 N 58: дата введения 2022-01-01. Swrit.ru. [Электронный ресурс]. URL: https://www.swrit.ru/doc/gost34/34.602-2020.pdf (дата обращения: 21.03.2023).
- Калачева А.Г. Оценка инновационного потенциала предприятия как составляющая анализа его инвестиционной привлекательности // Universum: Экономика и юриспруденция. – 2016. – № 1(22). – c. 1.
- Иванова С.А., Иванова И.А. Роль инновационной деятельности в повышении конкурентоспособности бизнеса // Системы управления полным жизненным циклом высокотехнологичной продукции в машиностроении: Новые источники роста: Материалы II Всероссийской научно-практической конференции. Москва, 2019. – c. 69-71.
- Кривов´яз Ю.О. Застосування концепцІй прогнозного технІчного обслуговування з використанням методІв машинного навчанн // Актуальные научные исследования в современном мире. – 2021. – № 80. – c. 101-111. – doi: ZVVELH.
- Vishwa G. Predictive Maintenance Market: Global Opportunity Analysis And Industry Forecast, 2020–2027 // Allied Market Research. – 2021. – p. 1-6.
- Ионов Г.А., Пасечник Ф.В., Самотесов Ю.А., Ульчугаев Д.С. Интеграция предиктивного технического обслуживания производственных активов как элемент цифровой трансформации // Актуальные проблемы развития хозяйствующих субъектов, территорий и систем регионального и муниципального управления: Материалы 16-й Международной научно-практической конференции. Том ВЫПУСК 2. Курск, 2021. – c. 110-112.
- Старожук Е.А., Яковлева М.В. Исследование ключевых рисков при внедрении концепции цифровых двойников в автоматизированную систему управления жизненным циклом продукции // Системы управления полным жизненным циклом высокотехнологичной продукции в машиностроении: Новые источники роста: Материалы III Всероссийской научно-практической конференции. Москва, 2020. – c. 298-302.– doi: 10.18334/9785912923258.298-302.
- Cachada A., Barbosa J., Leitño P. Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture // 23rd International Conference on Emerging Technologies and Factory Automation. Torino, Italy, 2018. – p. 139-146.– doi: 10.1109/ETFA.2018.8502489.
- Swanson L. Linking maintenance strategies to performance // International Journal of Production Economics. – 2001. – № 3. – p. 237.
- Taking pro-active measures based on advanced data analytics to predict and avoid machine failure // Predictive Maintenance. – 2017. – № 7. – p. 6-9.
- Старожук Е.А., Красникова А.С., Тишкин В.В. Инструменты и ключевые показатели для оценки эффективности систем управления техническим обслуживанием и ремонтами // Системы управления полным жизненным циклом высокотехнологичной продукции в машиностроении: Новые источники роста: Материалы Всероссийской научно-практической конференции. Москва, 2018. – c. 153-158.
- Яковлева М.В., Шалина А.И. Алгоритм принятия решений о внедрении предиктивного обслуживания оборудования на высокотехнологичных предприятиях // Вопросы инновационной экономики. – 2023. – № 1. – c. 159-172. – doi: 10.18334/vinec.13.1.117426.
- Thaduri A., Galar D., Kumar U. Railway Assets: A Potential Domain for Big Data Analytics // Procedia Computer Science. – 2015. – p. 457-467. – doi: 10.1016/j.procs.2015.07.323.
- How Lockheed Martin Uses AI and IoT for Predictive Maintenance of Aircraft. Fieldserviceconnecteu.wbresearch.com. [Электронный ресурс]. URL: https://fieldserviceconnecteu.wbresearch.com/blog/how-lockheed-martin-uses-ai-and-iot-for-predictive-maintenance-of-aircraft (дата обращения: 30.03.2023).
- Яковлева М.В., Шалина А.И. Предиктивное обслуживание оборудования на протяжении его жизненного цикла как фактор сокращения расходов высокотехнологичных предприятий. / В сборнике: Системы управления полным жизненным циклом высокотехнологичной продукции в машиностроении: Новые источники роста. - М.: Издательство МГТУ им. Н. Э. Баумана, 2023. – 186-191 c.
- Кривов´яз Ю.О. Застосування концепцІй прогнозного технІчного обслуговування з використанням методІв машинного навчанн // Актуальные научные исследования в современном мире. – 2021. – № 80. – p. 101-111.
- Чепцов Н.А. Бизнес-процессы подготовки технического обслуживания и ремонтов металлургического оборудования // Донбас-2020: Перспективы развития глазами молодых ученых: Матеріали VI науково-практичної конференції у рамках молодіжного наукового форуму «Молодіжне покоління в науці без кордонів». Донецк, 2012. – c. 462-466.
- Беляева Е.С. Совершенствование управления инновационной деятельностью промышленного предприятия на основе оценки инновационного потенциала. / Афтореф. дис. канд. экон. наук: 08.00.05. - Барнаул, 2007. – 23 c.
- Попова Е., Щевьева В.А. Сравнительная характеристика методов оценки инновационного потенциала предприятия // Форум молодых ученых. – 2019. – № 3(31). – c. 657-665.
- Демильханова Б.А. Методика оценки инновационной активности промышленного комплекса // Экономический анализ: теория и практика. – 2013. – № 19(322). – c. 17-25.
- Черникова А.Е. Оценка инновационного потенциала предприятия // Социально-экономическое развитие России: проблемы, тенденции, перспективы: Сборник научных статей участников 21-й Международной научно-практической конференции в рамках IV Московского академического экономического форума. Курск, 2022. – c. 233-236.
- Бабкина А.А., Седов Д.М., Свиридов П.С., Брозгунова Н.П. Современные подходы, требования и этапы организации информационной системы предприятия // Наука и образование. – 2020. – № 2. – c. 18.
- Тарасов И.В. Технологии Индустрии 4.0: Влияние на повышение производительности промышленных компаний // Стратегические решения и риск менеджмент. – 2018. – № 2. – c. 62-69. – doi: 10.17747/2078-8886-2018-2-62-69.
- Брозгунова Н.П. Информационные и программные средства реализации анализа данных // Наука и образование. – 2020. – № 4. – c. 25.
- Ларькин В.В, Кропачев А.В., Мельников Е.А., Николаев С.Г., Комаров В.Г., Вершинин С.В., Илюкевич В.В. К вопросу применения предиктивных моделей обслуживания сложных технических систем в процессе их эксплуатации // Модели и методы развития технологий машиностроения в условиях цифровизации экономики России. – 2022. – c. 207-212.
- Байдаров Д.Ю., Абакумов Е.М., Файков Д.Ю. Программное обеспечение «тяжелого» класса: возможности импортозамещения // Вопросы инновационной экономики. – 2022. – № 1. – c. 295-316. – doi: 10.18334/vinec.12.1.114143.
- Медиацентр Factory5. [Электронный ресурс]. URL: https://factory5.ai (дата обращения: 29.11.2022).
- Мёрфи К. Выбор подходящего датчика для предиктивного технического обслуживания // Электроника: Наука, технология, бизнес. – 2020. – № 9(200). – c. 96-103. – doi: 10.22184/1992-4178.2020.200.9.96.102.
补充文件
