Коморбидность хронической сердечной недостаточности и остеопороза: обзор литературы

Обложка

Цитировать

Полный текст

Аннотация

Демографическое старение населения, обусловленное достижениями современной медицины, усилением профилактических мер по предупреждению заболеваний, а также мультиморбидность и наличие сопутствующих состояний в виде старческой астении влекут за собой увеличение числа пациентов, имеющих коморбидность сердечной недостаточности и остеопороза, в результате чего могут развиваться серьёзные последствия в виде потери функциональной и социальной активности, инвалидности, высокой частоты госпитализации и смертности. Хроническая сердечная недостаточность (ХСН) и остеопороз ранее рассматривались как заболевания, протекающие независимо друг от друга, однако современные данные подтверждают их вероятную взаимосвязь, хотя этот факт требует дальнейшего уточнения. В статье обсуждены общие факторы риска развития ХСН и остеопороза, а также ведущие патофизиологические механизмы, лежащие в основе этих состояний. Освещены текущие взгляды на причины нарушения костного метаболизма и его особенности у пациентов с ХСН. Представлены данные о вкладе системного и иммунного воспаления, активации ренин-ангиотензин-альдостероновой системы в патогенез и прогрессирование ХСН и остеопороза. Показана взаимосвязь низкой минеральной плотности костной ткани и гемодинамических нарушений у лиц с сердечной недостаточностью. Всё это рассмотрено в перспективе выделения пациентов с ХСН в группу риска развития остеопороза, а пациентов со сниженной минеральной плотностью кости — в группу высокого сердечно-сосудистого риска.

Об авторах

Вера Николаевна Ларина

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Автор, ответственный за переписку.
Email: larinav@mail.ru
ORCID iD: 0000-0001-7825-5597
SPIN-код: 3674-9620

д.м.н., профессор, зав. кафедрой

Россия, 117997, Москва, ул. Островитянова, д. 1

Екатерина Сергеевна Щербина

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: esscherbina@inbox.ru
ORCID iD: 0000-0001-8619-8123
SPIN-код: 6888-7050

ординатор кафедры

Россия, 117997, Москва, ул. Островитянова, д. 1

Валерия Валерьевна Дрютова

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: wpolikarpovaaaa@gmail.com
ORCID iD: 0000-0003-4894-7167
SPIN-код: 5109-6434

ассистент кафедры

Россия, 117997, Москва, ул. Островитянова, д. 1

Владимир Геннадьевич Ларин

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: larinvladimir@mail.ru
ORCID iD: 0000-0002-3177-3407
SPIN-код: 9394-2871

к.м.н., доцент

Россия, 117997, Москва, ул. Островитянова, д. 1

Список литературы

  1. Belaya ZE, Belova KYu, Biryukova EV, et al. Federal clinical guidelines for diagnosis, treatment and prevention of osteoporosis. Osteoporosis and Bone Diseases. 2021;24(2):4–47. (In Russ). doi: 10.14341/osteo1293
  2. Clinical practice guidelines for Сhronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ). doi: 10.15829/1560-4071-2020-4083
  3. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur J Heart Fail. 2021;23(3):352–380. doi: 10.1002/ejhf.2115
  4. Nagai M, Förster CY, Dote K, Shimokawa H. Sex hormones in heart failure revisited. Eur J Heart Fail. 2019;21(3):308–310. doi: 10.1002/ejhf.1408
  5. Kanis JA, Norton N, Harvey NC, et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. Arch Osteoporos. 2021;16(1):82. doi: 10.1007/s11657-020-00871-9
  6. Meyer AC, Ek S, Drefahl S, Ahlbom A, Hedström M, Modig K. Trends in Hip Fracture Incidence, Recurrence, and Survival by Education and Comorbidity: A Swedish Register-based Study. Epidemiology. 2021;32(3):425-433. doi: 10.1097/EDE.0000000000001321
  7. Fazullina ON, Korbut AI, Dashkin MV, et al. Risk factors for decreased bone mineral density in men with type 2 diabetes. Diabetes mellitus. 2020;23(5):424–433. (In Russ). doi: 10.14341/DM12383
  8. Lopatin YuM, Nedogoda SV, Arkhipov MV, et al. Pharmacoepidemiological analysis of routine management of heart failure patients in the Russian Federation. Part I. Russian Journal of Cardiology. 2021;26(4):4368. (In Russ). doi: 10.15829/1560-4071-2021-4368
  9. Roger VL. Epidemiology of Heart Failure: A Contemporary Perspective. Circ Res. 2021;128(10):1421–1434. doi: 10.1161/CIRCRESAHA.121.318172
  10. Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–3287. doi: 10.1093/cvr/cvac013
  11. Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4–14. (In Russ). doi: 10.18087/cardio.2021.4.n1628
  12. Veronese N, Cereda E, Stubbs B, et al. Risk of cardiovascular disease morbidity and mortality in frail and pre-frail older adults: results from a meta-analysis and exploratory meta-regression analysis. Ageing Res Rev. 2017;35:63–73. doi: 10.1016/j.arr.2017.01.003
  13. Topolyanskaya SV, Osipovskaya IA, Lifanova LS, et al. Mineral density and metabolism of bone tissue in patients with chronic heart failure insufficiency of senior age. The Russian Archives of Internal Medicine. 2017;7(3):205–211. (In Russ). doi: 10.20514/2226-6704-2017-7-3-205-211
  14. Chizhov PA, Ivanova YuI, Medvedeva TV, et al. Osteoporosis of the spine and chronic heart failure. International Research Journal. 2016;10(52):106–109. (In Russ). doi: 10.18454/IRJ.2016.52.059
  15. Liu XP, Jian XY, Liang DL, et al. The association between heart failure and risk of fractures: Pool analysis comprising 260,410 participants. Front Cardiovasc Med. 2022;9:977082. doi: 10.3389/fcvm.2022.977082
  16. Steinmann E, Brunner-La Rocca HP, Maeder MT, et al. Is the clinical presentation of chronic heart failure different in elderly versus younger patients and those with preserved versus reduced ejection fraction? Eur J Intern Med. 2018;57:61–69. doi: 10.1016/j.ejim.2018.06.005
  17. Skripnikova IA, Yaralieva EK, Drapkina OM. Heart failure and osteoporosis: common pathogenetic components. Cardiovascular Therapy and Prevention. 2022;21(6):3233. (In Russ). doi: 10.15829/1728-8800-2022-3233
  18. Carbone L, Buzkova P, Fink HA, et al. Hip fractures and heart failure: findings from the Cardiovascular Health Study. Eur Heart J. 2010;31(1):77–84. doi: 10.1093/eurheartj/ehp483
  19. Chiu CZ, Yeh JH, Shyu KG, et al. Can osteoporosis increase the incidence of heart failure in adults? Curr Med Res Opin. 2017;33(6):1119–1125. doi: 10.1080/03007995.2017.1308343
  20. Loncar G, Cvetinovic N, Lainscak M, et al. Bone in heart failure. J Cachexia Sarcopenia Muscle. 2020;11(2):381–393. doi: 10.1002/jcsm.12516
  21. Larina VN, Bart BYa, Raspopova TN. Clinical implications of osteoporosis in chronic heart failure. Russian Journal of Cardiology. 2013;2:98–104. (In Russ). doi: 10.15829/1560-4071-2013-2-98-104
  22. Topolyanskaya SV. Sarcopenia, obesity, osteoporosis and old age. Sechenov Medical Journal. 2020;11(4):23–35. (In Russ). doi: 10.47093/2218-7332.2020.11.4.23-35
  23. Krivoshapova KE, Masenko VL, Bazdyrev ED, et al. Osteosarcopenic obesity in cardiovascular patients. Controversial and open issues. Cardiovascular Therapy and Prevention. 2021;20(6):2787. (In Russ). doi: 10.15829/1728-8800-2021-2787
  24. Martens P, Ter Maaten JM, Vanhaen D, et al. Heart failure is associated with accelerated age related metabolic bone disease. Acta Cardiol. 2021;76(7):718–726. doi: 10.1080/00015385.2020.1771885
  25. Majumdar SR, Ezekowitz JA, Lix LM, et al. Heart failure is a clinically and densitometrically independent risk factor for osteoporotic fractures: population-based cohort study of 45,509 subjects. J Clin Endocrinol Metab. 2012;97(4):1179–1186. doi: 10.1210/jc.2011-3055
  26. Ge G, Li J, Wang Q. Heart failure and fracture risk: a meta-analysis. Osteoporos Int. 2019;30(10):1903–1909. doi: 10.1007/s00198-019-05042-2
  27. Shilov AT, Teplyakov IV, Yakovleva AA, et al. Clinical and pathogenic relationship between chronic heart failure, type 2 diabetes mellitus and osteoporosis. Complex Issues of Cardiovascular Diseases. 2018;7(1):6–13. (In Russ). doi: 10.17802/2306-1278-2018-7-1-6-13
  28. Senichkina AA, Savina NM, Iosava IK, et al. Patients outcome with decompensated heart failure and mortality predictors: two-year follow-up results. KMJ. 2019;4:23–30. (In Russ). doi: 10.26269/7gv6-5m89
  29. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 2022;33(10):2049–2102. doi: 10.1007/s00198-021-05900-y
  30. Gu Z, Yuanyuan Y, Lingyu Z, Cong C. Assessment of the risk of incident heart failure in patients with osteoporosis: a systematic review and meta-analysis of eligible cohort studies. Pol Arch Intern Med. 2020;130(11):934–941. doi: 10.20452/pamw.15598
  31. Abe H, Semba H, Takeda N. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases. J Atheroscler Thromb. 2017;24(9):884–894. doi: 10.5551/jat.RV17009
  32. Gaudio A, Xourafa A, Rapisarda R, et al. Peripheral artery disease and osteoporosis: Not only age related (Review). Mol Med Rep. 2018;18(6):4787–4792. doi: 10.3892/mmr.2018.9512
  33. Usala RL, Fernandez SJ, Mete M, et al. Hyponatremia Is Associated with Increased Osteoporosis and Bone Fractures in a Large US Health System Population. J Clin Endocrinol Metab. 2015;100(8):3021–3031. doi: 10.1210/jc.2015-126
  34. Murthy K, Ondrey GJ, Malkani N, et al. The effects of hyponatremia on bone density and fractures: a systematic review and meta-analysis. Endocr Pract. 2019;25(4):366–378. doi: 10.4158/EP-2018-0499
  35. Sun L, Su J, Wang M. Changes of serum IGF-1 and ET-1 levels in patients with osteoporosis and its clinical significance. Pak J Med Sci. 2019;35(3):691–695. doi: 10.12669/pjms.35.3.84
  36. Kosmatova OV, Miagkova MA, Skripnikova IA. Effects of vitamin D and calcium on the cardiovascular system: safety issues. The Russian Journal of Preventive Medicine. 2020;23(3):140–148. (In Russ). doi: 10.17116/profmed202023031140
  37. Bandeira F, Oliveira LB, Caldeira RB, Toscano LS. Skeletal consequences of heart failure. Womens Health (Lond). 2022;18:17455057221135501. doi: 10.1177/17455057221135501
  38. Roffe-Vazquez DN, Huerta-Delgado AS, Castillo EC, et al. Correlation of Vitamin D with Inflammatory Cytokines, Atherosclerotic Parameters, and Lifestyle Factors in the Setting of Heart Failure: A 12-Month Follow-Up Study. Int J Mol Sci. 2019;20(22):5811. doi: 10.3390/ijms20225811
  39. Larina VN, Raspopova TN. Bone metabolism and mineral density in chronic heart failure. Kardiologiia. 2016;56(7):39–46. (In Russ). doi: 10.18565/cardio.2016.7.39-46
  40. Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther. 2020;34(6):849–863. doi: 10.1007/s10557-020-07071-0
  41. Larsen AI. Aortic calcification; from innocent bystander to independent predictor; the delicate balance in biology; da aaaCapo: Editorial accompanying ‘Abdominal aortic calcification — from ancient friend to modern foe’. Eur J Prev Cardiol. 2021;28(17):e20–e24. doi: 10.1177/2047487320937130
  42. Dutka M, Bobiński R, Wojakowski W, et al. Osteoprotegerin and RANKL-RANK-OPG-TRAIL signaling axis in heart failure and other cardiovascular diseases. Heart Fail Rev. 2022;27(4):1395–1411. doi: 10.1007/s10741-021-10153-2
  43. Verbovoy AF, Tsanava IA, Mitroshina EV, Sharonova LA. Osteoprotegerin is a new marker of cardiovascular diseases. Terapevticheskii arkhiv. 2017;89(4):91–94. (In Russ). doi: 10.17116/terarkh201789491-94
  44. Teplyakov AT, Berezikova EN, Shilov SN, et al. Osteoprotegerin is a new independent predictor of the progression of cardiovascular pathology: chronic heart failure associated with type 2 diabetes and osteoporosis. Bulletin of Siberian Medicine. 2018;17(4):141–151. (In Russ). doi: 10.20538/1682-0363-2018-4-141-151
  45. Stenemo M, Nowak C, Byberg L, et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur J Heart Fail. 2018;20(1):55–62. doi: 10.1002/ejhf.980
  46. Gasanov MZ, Batyushin MM. mTOR and indicators of sarcopenia in patients with chronic kidney disease receiving hemodialysis treatment. Nephrology (Saint-Petersburg). 2019;23(3):65–69. (In Russ). doi: 10.24884/1561-6274-2019-23-3-65-69
  47. Martínez-Milla J, Aceña Á, Pello A, et al. NT-proBNP Levels Influence the Prognostic Value of Mineral Metabolism Biomarkers in Coronary Artery Disease. J Clin Med. 2022;11(14):4153. doi: 10.3390/jcm11144153
  48. Alieva AM, Pinchuk TV, Kislyakov VA. Fibroblast growth factor-23 (FGF23) is a novel biological marker in heart failure. KMJ. 2022;1:59–65. (In Russ). doi: 10.26269/pygh-k050
  49. Alieva AM, Reznik EV, Teplova NV, et al. Klotho protein and the atherosclerotic cardiovascular diseases: prolonging the thread of the life. Medical Journal of the Russian Federation. 2022;28(5):365–380. (In Russ). doi: 10.17816/medjrf110823
  50. Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci. 2021;22(9):4620. doi: 10.3390/ijms22094620
  51. Skripnikova IA, Abirova ES, Alikhanova NA, Kosmatova OV. Vessel stiffness, calcification and osteoporosis. Common pathogenetic components. Cardiovascular Therapy and Prevention. 2018;17(4):95–102. (In Russ). doi: 10.15829/1728-8800-2018-4-95-102
  52. Skripnikova IA, Kolchina MA, Meshkov AN, et al. Arterial calcification, atherosclerosis and osteoporosis: only clinical associations or a genetic platform? Cardiovascular Therapy and Prevention. 2021;20(7):30–34. (In Russ). doi: 10.15829/1728-8800-2021-3034
  53. Skripnikova IA, Alikhanova NA, Yaralieva EK, et al. The level of terminal pro-brain natriuretic peptide depending on vascular wall condition and bone mass in postmenopausal women. Cardiovascular Therapy and Prevention. 2020;19(3):2542. (In Russ). doi: 10.15829/1728-8800-2020-2542
  54. Topolyanskaya SV, Osipovskaya IA, Lifanova LS, et al. Bone Mineral Density and Metabolism in Very Elderly Patients with Congestive Heart Failure. SN Compr Clin Med. 2019;1:451–457. doi: 10.1007/s42399-019-00065-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Общие факторы риска развития хронической сердечной недостаточности и остеопороза.

Скачать (307KB)
3. Рис. 2. Вклад ренин-ангиотензин-альдостероновой системы в нарушение минерализации костной ткани при хронической сердечной недостаточности. Примечание. АПФ — ангиотензинпревращающий фермент, ФНО — фактор некроза опухоли, ПТГ — паратиреоидный гормон.

Скачать (252KB)

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах