Питавастатин: фокус на безопасность и лекарственные взаимодействия

Обложка

Цитировать

Полный текст

Аннотация

Питавастатин – препарат из группы ингибиторов редуктазы гидроксиметил-глютарового кофермента А, обладающий хорошей гиполипидемической эффективностью, отсутствием значимого влияния на риск развития сахарного диабета. Этот препарат в незначительной степени метаболизируется системой цитохромов Р450, что минимизирует риск возможных лекарственных взаимодействий. С другой стороны, на эффективность и безопасность этого препарата могут влиять ингибиторы пептидного органического анионного транспортера. В обзоре суммированы данные существующих в настоящее время исследований, посвященных проблемам лекарственных взаимодействий питавастатина.

Об авторах

Лариса Олеговна Минушкина

ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ

Автор, ответственный за переписку.
Email: minushkina@mail.ru
ORCID iD: 0000-0002-4203-3586

д-р мед. наук, проф. каф. терапии, кардиологии и функциональной диагностики

Россия, Москва

Дмитрий Александрович Затейщиков

ФГБУ ДПО «Центральная государственная медицинская академия» Управления делами Президента РФ; ГБУЗ «Городская клиническая больница №51» Департамента здравоохранения г. Москвы

Email: minushkina@mail.ru
ORCID iD: 0000-0001-7065-2045

д-р мед. наук, проф., зав каф. терапии, кардиологии и функциональной диагностики ФГБУ ДПО ЦГМА, зав. первичным сосудистым отд-нием ГБУЗ ГКБ №51

Россия, Москва; Москва

Список литературы

  1. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis 2019; 290: 140–205.
  2. Ming EE, Davidson MH, Gandhi SK, et al. Concomitant use of statins and CYP3A4 inhibitors in administrative claims and electronic medical records databases. J Clin Lipidol 2008; 2 (6): 453–63.
  3. Masana L. Pitavastatin in cardiometabolic disease: therapeutic profile. Cardiovasc Diabetol 2013, 12 (Suppl. 1): S2.
  4. Mukhtar RY, Reid J, Reckless JP. Pitavastatin. Int J Clin Pract 2005; 59 (2): 239–52.
  5. Fujino H, Yamada I, Shimada S, et al. Metabolic fate of pitavastatin, a new inhibitor of HMG-CoA reductase: human UDP-glucuronosyltransferase enzymes involved in lactonization. Xenobiotica 2003; 33 (1): 27–41.
  6. Kajinami K, Takekoshi N, Saito Y. Pitavastatin: efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 2003; 21 (3): 199–215.
  7. Teramoto T. Pitavastatin: clinical effects from the LIVES Study. Atheroscler Suppl 2011; 12 (3): 285–8.
  8. Chamberlin KW, Baker WL. Benefit-risk assessment of pitavastatin for the treatment of hypercholesterolemia in older patients. Clin Interv Aging 2015; 10: 733–40.
  9. Hiro T, Kimura T, Morimoto T, et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: a multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J Am Coll Cardiol 2009; 54 (4): 293–302.
  10. Taguchi I, Iimuro S, Iwata H, et al. High-Dose Versus Low-Dose Pitavastatin in Japanese Patients With Stable Coronary Artery Disease (REAL-CAD): A Randomized Superiority Trial. Circulation 2018; 137 (19): 1997–2009.
  11. Hagiwara N, Kawada-Watanabe E, Koyanagi R, et al. Low-density lipoprotein cholesterol targeting with pitavastatin + ezetimibe for patients with acute coronary syndrome and dyslipidaemia: the HIJ-PROPER study, a prospective, open-label, randomized trial. Eur Heart J 2017; 38 (29): 2264–76.
  12. Teramoto T, Shimano H, Yokote K, Urashima M. New evidence on pitavastatin: efficacy and safety in clinical studies. Exp Opin Pharmacother 2010; 11 (5): 817–28.
  13. Gosho M, Tanahashi M, Hounslow N, Teramoto T. Pitavastatin therapy in polymedicated patients is associated with a low risk of drug-drug interactions: analysis of real-world and phase 3 clinical trial data. Int J Clin Pharmacol Ther 2015; 53 (8): 635–46.
  14. Fujino H, Yamada I, Shimada S, et al. Interaction between fibrates and statins – metabolic interactions with gemfibrozil. Drug Metabol Drug Interact 2003; 19 (3): 161–76.
  15. Fujino H, Shimada S, Yamada I, et al. Studies on the interaction between fibrates and statins using human hepatic microsomes. Arzneimittelforschung 2003; 53 (10): 701–7.
  16. Lee HW, Kang WY, Jung W, et al. Evaluation of the Pharmacokinetic Drug-Drug Interaction between Micronized Fenofibrate and Pitavastatin in Healthy Volunteers. Pharmaceutics 2020; 12 (9).
  17. Alam K, Pahwa S, Wang X, et al. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol Pharmaceut 2016; 13 (3): 839–51.
  18. Fujino H, Nakai D, Nakagomi R, et al. Metabolic stability and uptake by human hepatocytes of pitavastatin, a new inhibitor of HMG-CoA reductase. Arzneimittelforschung 2004; 54 (7): 382–8.
  19. Hu M, Mak VW, Yin OQ, et al. Effects of grapefruit juice and SLCO1B1 388A>G polymorphism on the pharmacokinetics of pitavastatin. Drug Metab Pharmacokinet 2013; 28 (2): 104–8.
  20. Nakagawa S, Gosho M, Inazu Y, Hounslow N. Pitavastatin Concentrations Are Not Increased by CYP3A4 Inhibitor Itraconazole in Healthy Subjects. Clin Pharmacol Drug Dev 2013; 2 (2): 195–200.
  21. Sakaeda T, Fujino H, Komoto C, et al. Effects of acid and lactone forms of eight HMG-CoA reductase inhibitors on CYP-mediated metabolism and MDR1-mediated transport. Pharm Res 2006; 23 (3): 506–12.
  22. Wang YC, Hsieh TC, Chou CL, et al. Risks of Adverse Events Following Coprescription of Statins and Calcium Channel Blockers: A Nationwide Population-Based Study. Medicine (Baltimore) 2016; 95 (2): 2487.
  23. Patel M, Kothari C. Quantitative bio-analysis of pitavastatin and candesartan in rat plasma by HPLC-UV: Assessment of pharmacokinetic drug-drug interaction. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1138: 121962.
  24. Xu C, Fang D, Chen X, et al. Effect of telmisartan on the therapeutic efficacy of pitavastatin in high-fat diet induced dyslipidemic guinea pigs. Eur J Pharmacol 2015; 762: 364–71.
  25. Inagaki Y, Hunt T, Arana B, et al. Drug-drug interaction study to assess the effects of multiple-dose pitavastatin on steady-state warfarin in healthy adult volunteers. J Clin Pharmacol 2011; 51 (9): 1302–9.
  26. Yu CY, Campbell SE, Zhu B, et al. Effect of pitavastatin vs. rosuvastatin on international normalized ratio in healthy volunteers on steady-state warfarin. Curr Med Res Opin 2012; 28 (2): 187–94.
  27. Kim SJ, Yoshikado T, Ieiri I, et al. Clarification of the Mechanism of Clopidogrel-Mediated Drug-Drug Interaction in a Clinical Cassette Small-dose Study and Its Prediction Based on In Vitro Information. Drug Metab Dispos 2016; 44 (10): 1622–32.
  28. Yu CY, Campbell SE, Sponseller CA, et al. Steady-state pharmacokinetics of darunavir/ritonavir and pitavastatin when co-administered to healthy adult volunteers. Clin Drug Investig 2014; 34 (7): 475–82.
  29. Morgan RE, Campbell SE, Suehira K, et al. Effects of steady-state lopinavir/ritonavir on the pharmacokinetics of pitavastatin in healthy adult volunteers. J Acquir Immune Defic Syndr 2012; 60 (2): 158–64.
  30. Trueck C, Hsin CH, Scherf-Clavel O, et al. A Clinical Drug-Drug Interaction Study Assessing a Novel Drug Transporter Phenotyping Cocktail With Adefovir, Sitagliptin, Metformin, Pitavastatin, and Digoxin. Clin Pharmacol Ther 2019; 106 (6): 1398–07.
  31. Ahlström B, Frithiof R, Hultström M, et al. The swedish covid-19 intensive care cohort: risk factors of icu admission and icu mortality. Acta Anaesthesiol Scand 2021.
  32. Scheen AJ. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. Diabetes Metab 2020; 47 (6): 101220.
  33. Reiner Ž, Hatamipour M, Banach M, et al. Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci 2020; 16 (3): 490–6.
  34. Baby K, Maity S, Mehta CH, et al. Targeting SARS-CoV-2 RNA-dependent RNA polymerase: An in silico drug repurposing for COVID-19. F1000Res 2020; 9: 1166.
  35. DeFilippi C, Toribio M, Wong LP, et al. Differential Plasma Protein Regulation and Statin Effects in Human Immunodeficiency Virus (HIV)-Infected and Non-HIV-Infected Patients Utilizing a Proteomics Approach. J Infect Dis 2020; 222 (6): 929–39.

© ООО "Эко-Вектор", 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах