Myocardial metabolic background on chemotherapy and means of their correction

Cover Page

Cite item

Full Text

Abstract

Recent years have seen significant progress in the treatment of many oncologicaldiseases associated with the development of new chemotherapeutic agents. Typically, they are used in combination with classical chemotherapy regimens that in-clude doxorubicin. In the background of this combined treatment significant prolongation of life of the patients was noted, but at the same time the risk of cardiotoxicity was considerably increased. The survey provides information about the cardiomyocytesmetabolic disorders during therapy with anthracyclines, discussing the possibility of pathogenetic treatment and prevention.

About the authors

Yu. A Vasyuk

Moscow State University of Medicine and Dentistry

д-р мед. наук, проф., зав. каф. клин. функциональной диагностики

E. L Shkolnik

Moscow State University of Medicine and Dentistry

Email: eshkolnik@mail.ru
д-р мед. наук, проф. каф. клин. функциональной диагностики

V. V Nesvetov

Moscow State University of Medicine and Dentistry

ассистент каф. клин. функциональной диагностики

L. D Shkolnik

14th Korolenko City Clinical Hospital

д-р мед. наук, проф., зав. онкохирургическим отд-нием

G. V Varlan

14th Korolenko City Clinical Hospital

д-р мед. наук, зав. химиотерапевтическим отд-нием

A. V Pilschikov

20th Moscow City Policlinic

врач онколог

References

  1. Chu E. Physicians' Cancer Chemotherapy Drug Manual 2013. Jones & Bartlett Publishers 2012.
  2. Swain S, Whaley F.S, Ewer M.S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003; 97: 2869–79.
  3. Mercuro G, Cadeddu C, Piras A et al. Early epirubicin - induced myocardial dysfunction revealed by serial tissue doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist 2007; 12: 1124–33.
  4. Von Hoff D.D, Layard M.W, Basa P et al. Risk factors for doxorubicininduced congestive heart failure. Ann Intern Med 1979; 91: 710–7.
  5. Minotti G, Menna P, Salvatorelli E et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004; 56: 185–229.
  6. Tokarska-Schlattner M, Wallimann T, Schlattner U. Alterations in myocardial energy metabolism induced by the anti - cancer drug doxorubicin. C R Biol 2006; 329 (9): 657–68.
  7. Jeyaseelan R, Poizat C, Wu H.Y, Kedes L. Molecular mechanisms of doxorubicin - induced cardiomyopathy. Selective suppression of Reiske iron - sulfur protein, ADP/ATP translocase, and phosphofructokinase genes is associated with ATP depletion in rat cardiomyocytes. J Biol Chem 1997; 272: 5828–32.
  8. Pelikan P.C, Weisfeldt M.L, Jacobus W.E et al. Acute doxorubicin cardiotoxicity: functional, metabolic, and morphologic alterations in the isolated, perfused rat heart. J Cardiovasc Pharmacol 1986; 8: 1058–66.
  9. Nicolay K, Aue W.P, Seelig J et al. Effects of the anti - cancer drug adriamycin on the energy metabolism of rat heart as measured by in vivo 31PNMR and implications for adriamycin - induced cardiotoxicity. Biochim Biophys Acta 1987; 929: 5–13.
  10. Eidenschink A.B, Schroter G, Muller-Weihrich S, Stern H. Myocardial high - energy phosphate metabolism is altered after treatment with anthracycline in childhood. Cardiol Young 2000; 10: 610–7.
  11. Praet M, Ruysschaert J.M. In - vivo and in - vitro mitochondrial membrane damages induced in mice by adriamycin and derivatives. Biochim Biophys Acta 1993; 1149: 79–85.
  12. Nony P, Guastalla J-P, Rebattu P et al. In vivo measurement of myocardial oxidative metabolism and blood flow does not show changes in cancer patients undergoing doxorubicin therapy. Cancer Chemother Pharmacol 2000; 45: 375–80.
  13. Muraoka S, Miura T. Inactivation of mitochondrial succinatede - hydrogenase by adriamycin activated by horseradish peroxidase and hydrogen peroxide. Chem Biol Interact 2003; 145: 67–75.
  14. Zhou S, Starkov A, Froberg M.K et al. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 2001; 61: 771–7.
  15. Lopaschuk G.D, Belke D.D, Gamble J et al. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994; 1213: 263–76.
  16. Bordoni A, Biagi P, Hrelia S. The impairment of essential fatty acid metabolism as a key factor in doxorubicin - induced damage in cultured rat cardiomyocytes. Biochim Biophys Acta 1999; 1440: 100–6.
  17. Hong Y.M, Kim H.S, Yoon H.R. Serum lipid and fatty acid profiles in adriamycin - treated rats after administration of L-carnitine. Pediatr Res 2002; 51: 249–55.
  18. Wakasugi S, Fischman A.J, Babich J.W et al. Myocardial substrate utilization and left ventricular function in adriamycin cardiomyopathy. J Nucl Med 1993; 34: 1529–35.
  19. Hrelia S, Fiorentini D, Maraldi T et al. Doxorubicin induces early lipid peroxidation associated with changes in glucose transport in cultured cardiomyocytes. Biochim Biophys Acta 2002; 1567: 150–6.
  20. Tokarska-Schlattner M, Wallimann T, Schlattner U. Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity Mol Pharmacol 2002; 61: 516–23.
  21. Taegtmeyer H. Metabolism – the lost child of cardiology. J Am Coll Cardiol 2000; 36: 1386–8.
  22. Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart failure J Physiol 2003; 555 (1): 1–13.
  23. Schaper J, Froede R, Hein St et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991; 83: 504–14.
  24. Sabbah H.N, Sharov V, Riddle J.M et al. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992; 24: 1333–47.
  25. De Sousa E, Veksler V, Minajeva A et al. Subcellular creatine kinase alterations – Implications in heart failure. Circ Res 1999; 85: 68–76.
  26. Lopaschuk G.D, Barr R, Thomas P.D, Dyck J.R. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long - chain 3- ketoacyl coenzyme a thiolase. Circ Res 2003; 93 (3): e33–7.
  27. Lopaschuk G.D, Kozak R. Trimetazidine inhibits fatty acid oxidation in the heart. J Mol Cell Cardiol 1998; 30: A112–A113.
  28. Хадзегова А.Б., Васюк Ю.А., Ющук Е.Н. и др. Возможности миокардиальной цитопротекции в комплексном лечении больных с хронической сердечной недостаточностью. Кардиология. 2006; 11: 48–56.
  29. Gao D, Ning N, Niu X et al. Trimetazidine: a meta - analysis of randomised controlled trials in heart failure. Heart 2011; 97 (4): 278–86.
  30. Zhang L, Lu Y, Jiang H et al. Additional use of trimetazidine in patients with chronic heart failure: a meta - analysis. J Am Coll Cardiol 2012; 59 (10): 913–22.
  31. Amal Mohamed Moustafa Y, Amany Abd-Elrahman M. Shalahy impact of trimetazidine on doxorubicin - induced acute cardiotoxicity in mice:a biochemical and electron microscopic study. Egyptian J Histology 2006; 29 (1): 125–36.
  32. Li Y.J, Wang P.H, Chen C et al. Improvement of mechanical heart function by trimetazidine in db/db mice. Acta Pharmacol Sin 2010; 31 (5): 560–9.
  33. Pascale C, Fornengo P, Epifani G et al. Cardioprotection of trimetazidine and anthracycline - induced acute cardiotoxic effects. Lancet 2002; 359: 1153–4.
  34. Калинкина Н.В. Влияние триметазидина на безболевую ишемию миокарда и диастолическую функцию левого желудочка у пациентов, получающих антрациклиновые антибиотики. Вестн. неотложной и восстановительной медицины. 2006; 2: 195–8.
  35. Ватутин Н.Т., Калинкина Н.В., Риджок В.В., Столика О.И. Влияние триметазидина на вариабельность сердечного ритма и систолическую функцию левого желудочка у пациентов, получающих антрациклиновые антибиотики. Кровообіг та гемостаз. 2005; 3–4: 141–5.
  36. Tallarico D, Rizzo V, Di Maio F. Myocardial cytoprotection by trimetazidine against anthracycline - induced cardiotoxicity in anticancer chemotherapy Angiology 2003; 54 (2): 219–2.
  37. Carracedo A, Cantley L.C, Pandolfi P.P. Cancer metabolism: fatty acid oxidation in the limelight Nature Reviews Cancer/AOP 2013; doi: 10.1038/nrc3483

Copyright (c) 2013 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies