Prevalence and clinical significance of sarcopenia in patients with chronic myeloproliferative neoplasms: epidemiology, diagnosis, and intervention strategies
- Authors: Garifullina A.G.1, Bakirov B.A.1, Lasynova G.H.1, Goldyrev E.O.1, Kudlay D.A.1,2,3
-
Affiliations:
- Bashkir State Medical University
- Sechenov First Moscow State Medical University
- National Research Center — Institute of Immunology FMBA of Russia
- Issue: Vol 16, No 2 (2025)
- Pages: 147-155
- Section: Reviews
- URL: https://journals.rcsi.science/2221-7185/article/view/309745
- DOI: https://doi.org/10.17816/CS677247
- EDN: https://elibrary.ru/KCQOIT
- ID: 309745
Cite item
Full Text
Abstract
Chronic myeloproliferative neoplasms (MPNs) are a group of clonal hematopoietic disorders that predominantly affect older patients. These conditions are associated with increased risk of numerous complications. One of the key comorbidities in these patients is sarcopenia—a progressive loss of skeletal muscle mass, strength, and function—that significantly worsens quality of life and the prognosis of the underlying disease. The work aimed to systematize current data on the impact of sarcopenia on outcomes in patients with MPNs and to summarize recommendations for its early diagnosis and management to improve clinical outcomes. The review presents data on the epidemiology, pathogenesis, and clinical relevance of sarcopenia in patients with MPNs. Particular attention is given to the role of chronic inflammation, protein metabolism disorders, the consequences of antitumor therapy, and age-related changes in the development of muscle atrophy. The importance of early diagnosis of sarcopenia using modern tools—such as the SARC-F questionnaire, bioelectrical impedance analysis, and various physical performance tests—is emphasized. Strategies for correcting sarcopenia are presented, including physical exercise, nutritional support, and other approaches that may improve patient prognosis and quality of life. This work is of particular relevance to hematologists, geriatricians, and rehabilitation specialists involved in the care of patients with MPNs. Research into sarcopenia in the context of MPNs remains highly relevant, as timely diagnosis and management may significantly influence clinical outcomes.
Full Text
##article.viewOnOriginalSite##About the authors
Adelina G. Garifullina
Bashkir State Medical University
Author for correspondence.
Email: nakieva-1@yandex.ru
ORCID iD: 0000-0003-4191-8638
SPIN-code: 7501-6951
Russian Federation, 3 Lenina st, Ufa, Republic of Bashkortostan, 450008
Bulat A. Bakirov
Bashkir State Medical University
Email: bakirovb@gmail.com
ORCID iD: 0000-0002-3297-1608
SPIN-code: 9464-0504
MD, Dr. Sci. (Medicine), Associate Professor
Russian Federation, Ufa, Republic of BashkortostanGulnaz H. Lasynova
Bashkir State Medical University
Email: lasynova1987@mail.ru
ORCID iD: 0000-0001-5193-2164
SPIN-code: 5887-8878
Russian Federation, Ufa, Republic of Bashkortostan
Evgeny O. Goldyrev
Bashkir State Medical University
Email: evgenyy86@gmail.com
ORCID iD: 0009-0003-5307-3123
SPIN-code: 5655-9766
Russian Federation, Ufa, Republic of Bashkortostan
Dmitry A. Kudlay
Bashkir State Medical University; Sechenov First Moscow State Medical University; National Research Center — Institute of Immunology FMBA of Russia
Email: D624254@gmail.com
ORCID iD: 0000-0003-1878-4467
SPIN-code: 4129-7880
MD, Dr. Sci. (Medicine); Сorresponding member of the Russian Academy of Sciences
Russian Federation, Ufa, Republic of Bashkortostan; Moscow; MoscowReferences
- Dameshek W. Some speculations on the myeloproliferative syndromes [editorial]. Blood. 1951;6(4):372–375. Blood. 2016;127(6):663. doi: 10.1182/blood-2015-12-686402
- Melikyan AL, Subortseva IN, Kovrigina AM, et al. National clinical guidelines on diagnosis and treatment of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, and primary myelofibrosis) (edition 2024). Clinical oncohematology. 2024;17(3):291–334. doi: 10.21320/2500-2139-2024-17-3-291-334 EDN: LBZGTO
- Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Or-ganization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703–19. doi: 10.1038/s41375-022-01613-1
- Mancuso S, Accurso V, Santoro M, et al. The Essential Thrombocythemia, Thrombotic Risk Stratification, and Cardiovascular Risk Factors. Adv Hematol. 2020;2020:9124821. doi: 10.1155/2020/9124821
- Slot S, Dinmohamed AG, Visser O, Te Boekhorst PAW, Zweegman S. Survival in Primary Myelofibrosis: A Population-based Analysis in the Netherlands. Hemasphere. 2021;5(7):e595. doi: 10.1097/HS9.0000000000000595
- Bankar AR. Association of frailty with clinical outcomes in myeloproliferative neoplams: a population-based study from Ontario, Canada. A thesis submitted in conformity with the requirements for the degree of Master of Science (Clinical Epidemiology) Institute of Health Policy, Management and Evaluation University of Toronto (ON, Canada 2022). Toronto, 2022. Р. 1–105.
- Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169
- Dogru Gunduz H, Yildirim T, Ersoy Y. Sarcopenia and clinical presentation. Annals of Medical Research. 2021;24(1):0121–0126. Available from: https://annalsmedres.org/index.php/aomr/article/view/2121
- Biolo G, Cederholm T, Muscaritoli M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr. 2014;33(5):737–748. doi: 10.1016/j.clnu.2014.03.007
- Williams GR, Dunne RF, Giri S, Shachar SS, Caan BJ. Sarcopenia in the Older Adult With Cancer. J Clin Oncol. 2021;39(19):2068–2078. doi: 10.1200/JCO.21.00102
- Efe M, Saraç ZF, Savaş S, Kilavuz A, Akçi-Çek SF. Sarcopenia prevalence and the quality of life in older adults: A study from Turkey’s east. Ege Tıp Dergisi. 2021;(60 Suppl):52–59. doi: 10.19161/etd.915678
- Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. doi: 10.1016/j.metabol.2023.155533
- Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J cachexia sarcopenia muscle. 2022;13(1):86–99. doi: 10.1002/jcsm.12783
- Verdijk LB, Snijders T, Drost M, et al. Satellite cells in human skeletal muscle; from birth to old age. Age (Dordr). 2014;36(2):545–547. doi: 10.1007/s11357-013-9583-2
- Frontera WR, Zayas AR, Rodriguez N. Aging of human muscle: understanding sarcopenia at the single muscle cell level. Phys Med Rehabil Clin N Am. 2012;23(1):201–207, xiii. doi: 10.1016/j.pmr.2011.11.012
- Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol. 2013;45(10):2191–2199. doi: 10.1016/j.biocel.2013.05.016
- Edström E, Altun M, Bergman E, et al. Factors contributing to neuromuscular impairment and sarcopenia during aging. Physiol Behav. 2007;92(1–2):129–135. doi: 10.1016/j.physbeh.2007.05.040
- Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017;8:1960. doi: 10.3389/fimmu.2017.01960
- Walrand S, Zangarelli A, Guillet C, et al. Effect of fast dietary proteins on muscle protein synthesis rate and muscle strength in ad libitum-fed and energy-restricted old rats. Br J Nutr. 2011;106(11):1683–1690. doi: 10.1017/S0007114511002182
- Huang JH, Hood DA. Age-associated mitochondrial dysfunction in skeletal muscle: Contributing factors and suggestions for long-term interventions. IUBMB Life. 2009;61(3):201–214. doi: 10.1002/iub.164
- Ferri E, Marzetti E, Calvani R, Picca A, Cesari M, Arosio B. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci. 2020;21(15):5236. doi: 10.3390/ijms21155236
- Ji LL. Exercise at old age: does it increase or alleviate oxidative stress? Ann N Y Acad Sci. 2001;928:236–247. doi: 10.1111/j.1749-6632.2001.tb05653.x
- Sun MY, Chang CL, Lu CY, Wu SY, Zhang JQ. Sarcopenia as an Independent Risk Factor for Specific Cancers: A Propensity Score-Matched Asian Population-Based Cohort Study. Nutrients. 2022;14(9):1910. doi: 10.3390/nu14091910
- Peterson SJ, Mozer M. Differentiating Sarcopenia and Cachexia Among Patients With Cancer. Nutr Clin Pract. 2017;32(1):30–39. doi: 10.1177/0884533616680354
- Pin F, Couch ME, Bonetto A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr Opin Support Palliat Care. 2018;12(4):420–426. doi: 10.1097/SPC.0000000000000382
- Vega MC, Laviano A, Pimentel GD. Sarcopenia and chemotherapy-mediated toxicity. Einstein (Sao Paulo). 2016;14(4):580–584. doi: 10.1590/S1679-45082016MD3740
- Bauer J, Morley JE, Schols AMWJ, et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J Cachexia Sarcopenia Muscle. 2019;10(5):956–961. doi: 10.1002/jcsm.12483
- Mendes MCS, Pimentel GD, Costa FO, Carvalheira JBC. Molecular and neuroendocrine mechanisms of cancer cachexia. J Endocrinol. 2015;226(3):R29–43. doi: 10.1530/JOE-15-0170
- Calvani R, Picca A, Cesari M, et al. Biomarkers for Sarcopenia: Reductionism vs. Complexity. Curr Protein Pept Sci. 2018;19(7):639–642. doi: 10.2174/1389203718666170516115422
- Gupta P, Kumar S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus. 2022;14(9):e28787. doi: 10.7759/cureus.28787
- Yang M, Hu X, Xie L, et al. Comparing Mini Sarcopenia Risk Assessment With SARC-F for Screening Sarcopenia in Community-Dwelling Older Adults. J Am Med Dir Assoc. 2019;20(1):53–57. doi: 10.1016/j.jamda.2018.04.012
- Yang M, Jiang J, Zeng Y, Tang H. Sarcopenia for predicting mortality among elderly nursing home residents: SARC-F versus SARC-CalF. Medicine (Baltimore). 2019;98(7):e14546. doi: 10.1097/MD.0000000000014546
- Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7(1):28–36. doi: 10.1002/jcsm.12048
- Grigorieva II, Raskina TA, Letaeva MV, et al. Sarcopenia: pathogenesis and diagnosis. Fundamental and clinical medicine. 2019;4(4):105–116. doi: 10.23946/2500-0764-2019-4-4-105-116 EDN: QPGMAQ
- Zakrevsky AI, Fedorova AA, Pasechnik IN, Kutepov DE. Sarcopenia and its diagnosis. Clinical nutrition and metabolism. 2021;2(1):13–22. doi: 10.17816/clinutr71107 EDN: ZEUOEQ
- Masenko VL, Kokov AN, Grigoreva II, Krivoshapova KE. Radiology methods of the sarcopenia diagnosis. Issled prakt med (Print). 2019;6(4):127–137. doi: 10.17709/2409-2231-2019-6-4-13
- Samoilova IuG, Matveeva MV, Khoroshunova EA, et al. Body composition in sarcopenia in middle-aged individuals. Therapeutic Archive. 2022;94(10):1149–1154. doi: 10.26442/00403660.2022.10.201878 EDN: GHRGKZ
- Khoroshunova EA, Samoilova YuG, Matveeva MV, et al. Current methods for sarcopenia diagnosis in patients with impaired carbohydrate metabolism. Russian Journal of Preventive Medicine. 2022;25(10):116–121. doi: 10.17116/profmed202225101116 EDN: MBMYTK
- Gaivoronskiy IV, Nichiporuk GI, Gaivoronskiy IN, Nichiporuk NG. Bioimpedansometry as a method of the component bodystructure assessment (review). Bulletin of St. Petersburg University. Medicine. 2017;12(4):365–384. doi: 10.21638/11701/spbu11.2017.406. EDN: YNSXGC
- Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol med. 2022;127(3):228–237. doi: 10.1007/s11547-022-01450-3
- Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old evidence and new insights. Eur Radiol. 2020;30(4):2199–2208. doi: 10.1007/s00330-019-06573-2
- Beaudart C, McCloskey E, Bruyère O, et al. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16(1):170. doi: 10.1186/s12877-016-0349-4
- Beaudart C, Rolland Y, Cruz-Jentoft AJ, et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice : A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif Tissue Int. 2019;105(1):1–14. doi: 10.1007/s00223-019-00545-w
- Bruyère O, Beaudart C, Reginster JY, et al. Assessment of muscle mass, muscle strength and physical performance in clinical practice: An international survey. European Geriatric Medicine. 2016;7(3):243–246. doi: 10.1016/j.eurger.2015.12.009
- Maggio M, Ceda GP, Ticinesi A, et al. Instrumental and Non-Instrumental Evaluation of 4-Meter Walking Speed in Older Individuals. PLoS One. 2016;11(4):e0153583. doi: 10.1371/journal.pone.0153583
- Rydwik E, Bergland A, Forsén L, Frändin K. Investigation into the reliability and validity of the measurement of elderly people’s clinical walking speed: a systematic review. Physiother Theory Pract. 2012;28(3):238–256. doi: 10.3109/09593985.2011.601804
- Csapo R, Alegre LM. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand J Med Sci Sports. 2016;26(9):995–1006. doi: 10.1111/sms.12536
- Roth SM, Ferrell RF, Hurley BF. Strength training for the prevention and treatment of sarcopenia. J Nutr Health Aging. 2000;4(3):143–155.
- Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14(8):542–559. doi: 10.1016/j.jamda.2013.05.021
- Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16(9):740–747. doi: 10.1016/j.jamda.2015.05.021
- Liao CD, Tsauo JY, Wu YT, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis. Am J Clin Nutr. 2017;106(4):1078–1091. doi: 10.3945/ajcn.116.143594
- Bear DE, Langan A, Dimidi E, et al. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: a systematic review and meta-analysis. Am J Clin Nutr. 2019;109(4):1119–1132. doi: 10.1093/ajcn/nqy373
- Use of high-dose matrix formulation of vitamin D for the prevention and treatment of vitamin d deficiency, including in comorbid patients. Therapeutic Archive. 2024;96(10):992–1006. doi: 10.26442/00403660.2024.10.203016 EDN: NXPUJX
- Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–4345. doi: 10.1210/jc.2014-1742
- Polo-Ferrero L, Recio-Rodriguez JI, González-Manzano S, et al. Nutritional intake as a determinant of high-speed resistance and multicomponent training efficacy on strength in older women at risk of sarcopenia. A randomized clinical trial. Clin Nutr. 2025;47:103–111. doi: 10.1016/j.clnu.2025.02.015
- Skinner JW, Otzel DM, Bowser A, et al. Muscular responses to testosterone replacement vary by administration route: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2018;9(3):465–481. doi: 10.1002/jcsm.12291
- Albert SG, Morley JE. Testosterone therapy, association with age, initiation and mode of therapy with cardiovascular events: a systematic review. Clin Endocrinol (Oxf). 2016;85(3):436–443. doi: 10.1111/cen.13084
- De Spiegeleer A, Beckwée D, Bautmans I, Petrovic M. Sarcopenia Guidelines Development group of the Belgian Society of Gerontology and Geriatrics (BSGG). Pharmacological Interventions to Improve Muscle Mass, Muscle Strength and Physical Performance in Older People: An Umbrella Review of Systematic Reviews and Meta-analyses. Drugs Aging. 2018;35(8):719–734. doi: 10.1007/s40266-018-0566-y
Supplementary files
