Current dietary accents for the elderly: Narrative review

Cover Page

Cite item

Full Text

Abstract

Diet optimization is considered an effective strategy for preventing chronic noncommunicable diseases, as a necessary component of rehabilitation and, in general, as a preventive direction of healthy aging. The article discussed the different accents of the diet of older people. The main causes of the inferiority of such diet were considered. The review presented age-related physiological features of the changes in energy and nutrient requirements. Data on the features and criteria of formulating a diet, taking into account dietary diversity, are presented, including recommendations on the choice of food products. The basic principles of dietary correction in the presence of an alimentary-dependent risk factor in older people are described. The MIND diet was analyzed. The analysis revealed that diet must be optimized to prevent cognitive impairment.

About the authors

Natalia S. Karamnova

National Medical Research Center for Therapy and Preventive Medicine

Email: nkaramnova@gnicpm.ru
ORCID iD: 0000-0002-8604-712X
SPIN-code: 2878-3016

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Olga B. Shvabskaia

National Medical Research Center for Therapy and Preventive Medicine

Author for correspondence.
Email: oshvabskaya@gnicpm.ru
ORCID iD: 0000-0001-9786-4144
SPIN-code: 1193-2792

researcher

Russian Federation, Moscow

References

  1. Robertson A, Tirado C, Lobstein T, Jermini M, Knai C, Jensen JH, Ferro-Luzzi A, James WP. Food and health in Europe: a new basis for action. WHO Reg Publ Eur Ser. 2004;(96):i-xvi, 1-385, back cover.
  2. Promoting physical activity and healthy diets for healthy ageing in the WHO European Region [internet]. Copenhagen: WHO Regional Office for Europe; 2023. Licence: CC BY-NC-SA 3.0 IGO [cited 17.01.2024]. Available from: https://www.who.int/europe/publications/i/item/WHO-EURO-2023-8002-47770-70520.
  3. Sustainable healthy diets — Guiding principles [internet]. FAO and WHO. 2020. Rome [cited 17.01.2024]. Available from: https://www.fao.org/documents/card/en/c/CA6640EN.
  4. Puzin SN, Pogozheva AV, Potapov VN. Optimizing nutrition of older people as a mean of preventing premature aging. Problems of Nutrition. 2018;87(4):69–77. doi: 10.24411/0042-8833-2018-10044
  5. Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet. 2019;393(10170):447–492. doi: 10.1016/S0140-6736(18)31788-4
  6. Moreno LA, Meyer R, Donovan SM, et al. Perspective: Striking a Balance between Planetary and Human Health-Is There a Path Forward? Adv Nutr. 2022;13(2):355-375. doi: 10.1093/advances/nmab139
  7. The results of the "Selective observation of the diet of the population" [Internet]. Federal State Statistics Service. Available from: https://rosstat.gov.ru/itog_inspect. Access date 17.01.2024 (In Russ.)
  8. Kalinchenko SYu. Diseases of civilisation of the 21st century: are only genes to blame? A new model of medicine: 5P medicine as medicine of effective prophylaxis and therapy. Vopr. dietol. (Nutrition). 2017;7(1):5-9. (In Russ.). doi: 10.20953/2224-5448-2017-1-5-9
  9. Liberanskaya NS. DNA methylation and the possibility of its prevention and treatment for age-associated diseases. Nutrition Issues. 2017;7(1):30–35. doi: 10.20953/2224-5448-2017-1-30-35
  10. Tkacheva ON, Tutelyan VA, Shestopalov AE, et al. Nutritional insufficiency (malnutrition) in older adults. Clinical recommendations. Russian Journal of Geriatric Medicine. 2021;(1):15–34. doi: 10.37586/2686-8636-1-2021-15-34
  11. Baranovsky YuA, editor. Dietetics. Management. 5th ed. St. Petersburg: Peter; 2017. (In Russ.)
  12. Norms of physiological energy and nutritional requirements for various population groups of the Russian Federation. Methodological recommendations. MP 2.3.1.0253—21 [Internet]. Federal Service for Supervision of Consumer Rights Protection and Human Welfare; 2021 [cited 17.01.2024]. Available from: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=18979 (In Russ.)
  13. Volkert D, Beck AM, Cederholm T, et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin Nutr. 2019;38(1):10–47. doi: 10.1016/j.clnu.2018.05.024
  14. Total fat intake for the prevention of unhealthy weight gain in adults and children: WHO, 2023. Guideline [internet]. Geneva: WHO; 2023 [cited 17.01.2024]. Available from: https://iris.who.int/bitstream/handle/10665/370421/9789240073654-eng.pdf?sequence=1
  15. Saturated fatty acid and trans-fatty acid intake for adults and children: WHO guideline [internet]. Geneva: WHO; 2023 [cited 17.01.2024]. Available from: https://iris.who.int/bitstream/handle/10665/370419/9789240073630-eng.pdf?sequence=1
  16. Tutelyan VA, Pogozheva AV, Baturin AK. Biologically active components in the nutrition of cardiac patients. Moscow: SvR-ARGUS; 2012. EDN: QMBXUR (In Russ.)
  17. Kozhevnikova AV. Prevention of obesity of age persons. Clinical gerontology. 2017;23(9-10):35. EDN: ZFRTRB
  18. Wei H, Gao Z, Liang R, et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2016;116(3):514–525. doi: 10.1017/S0007114516001975
  19. Handbook of clinical nutrition and aging. 3rd ed. Moscow: Publishing Group ''GEOTAR-Media'', 2021. (In Russ.) doi: 10.33029/9704-6464-9-RPG-2021-1-496
  20. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169(7):659–669. doi: 10.1001/archinternmed.2009.38
  21. Drapkina OM, Kontsevaya AV, Kalinina AM, еt al. 2022 Prevention of chronic non-communicable diseases in the Russian Federation. National guidelines. Cardiovascular Therapy and Prevention. 2022;21(4):3235. doi: 10.15829/1728-8800-2022-3235
  22. Drapkina OM, Karamnova NS, Kontsevaya AV, et al. Russian Society for the Prevention of Noncommunicable Diseases (ROPNIZ). Alimentary-dependent risk factors for chronic non-communicable diseases and eating habits: dietary correction within the framework of preventive counseling. Methodological Guidelines. Cardiovascular Therapy and Prevention. 2021;20(5):2952. doi: 10.15829/1728-8800-2021-2952
  23. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–1124. doi: 10.1056/NEJM199704173361601
  24. Marventano S, Pulido MI, Sánchez-González C, et al. Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr. 2017;20(2):245–254. doi: 10.1017/S1368980016002299
  25. Viguiliouk E, Glenn AJ, Nishi SK, et al. Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: An umbrella review and updated systematic review and meta-analysis of prospective cohort studies. Adv Nutr. 2019;10(4):308–319. doi: 10.1093/advances/nmz113
  26. Howard BV, Van Horn L, Hsia J, et al. Low-fat dietary pattern and risk of cardiovascular disease: the Women's Health Initiative Randomized Controlled Dietary Modification Trial. JAMA. 2006;295(6):655–666. doi: 10.1001/jama.295.6.655
  27. Oh K, Hu FB, Manson JE, et al. Dietary fat intake and risk of coronary heart disease in women: 20 years of follow-up of the nurses' health study. Am J Epidemiol. 2005;161(7):672–679. doi: 10.1093/aje/kwi085
  28. Kris-Etherton P, Daniels SR, Eckel RH, et al. Summary of the scientific conference on dietary fatty acids and cardiovascular health: conference summary from the nutrition committee of the American Heart Association. Circulation. 2001;103(7):1034–1039. doi: 10.1161/01.cir.103.7.1034
  29. Van Dael P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations. Nutr Res Pract. 2021;15(2):137–159. doi: 10.4162/nrp.2021.15.2.137
  30. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–2067. doi: 10.1016/j.jacc.2011.06.063
  31. Ezhov MV, Kukharchuk VV, Sergienko IV, et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. doi: 10.15829/1560-4071-2023-5471
  32. Boytsov SA, Pogosova N V, Ansheles AA, et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):5452. doi: 10.15829/1560-4071-2023-5452
  33. Chowdhury R, Stevens S, Gorman D, et al. Association between fish consumption, long chain omega 3 fatty acids, and risk of cerebrovascular disease: systematic review and meta-analysis. BMJ. 2012;345:e6698. doi: 10.1136/bmj.e6698
  34. Zhang B, Xiong K, Cai J, Ma A. Fish consumption and coronary heart disease: A meta-analysis. Nutrients. 2020;12(8):2278. doi: 10.3390/nu12082278
  35. Yu XF, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol. 2014;20(41):15398–15412. doi: 10.3748/wjg.v20.i41.15398
  36. Zhao L-G, Sun JW, Yang Y, et al. Fish consumption and all-cause mortality: a meta-analysis of cohort studies. Eur J Clin Nutr. 2016;70(2):155–161. doi: 10.1038/ejcn.2015.72
  37. Alderman MH. Salt, blood pressure, and human health. Hypertension. 2000;36(5):890–893. doi: 10.1161/01.hyp.36.5.890
  38. Perry IJ. Dietary salt intake and cerebrovascular damage. Nutr Metab Cardiovasc Dis. 2000;10(4):229–235.
  39. He FJ, MacGregor GA. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens. 2009;23(6):363–384. doi: 10.1038/jhh.2008.144
  40. Mozaffarian D, Fahimi S, Singh GM, et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014;371(7):624–634. doi: 10.1056/NEJMoa1304127
  41. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10. doi: 10.1056/NEJM200101043440101
  42. Color indication on the labeling of food products in order to inform consumers. Methodological recommendations. MP 2.3.0122-18. Moscow; 2018 [Internet]. Federal Service for Supervision of Consumer Rights Protection and Human Well-being; 2018 [cited 17.01.2024]. Available from: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=10127. (In Russ.)
  43. Sugars intake for adult and children. Guideline [internet]. WHO. Geneva; 2015 [cited 17.01.2024]. Available from: https://iris.who.int/bitstream/handle/10665/149782/9789241549028_eng.pdf?sequence=1
  44. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2012;346:e7492. doi: 10.1136/bmj.e7492
  45. Te Morenga LA, Howatson AJ, Jones RM, Mann J. Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. Am J Clin Nutr. 2014;100(1):65–79. doi: 10.3945/ajcn.113.081521
  46. Tutelyan VA, Samsonov MS. Handbook of Dietetics. Moscow: Medicine; 2002. 541 p. (In Russ.)
  47. Martinchik AN, Mayev IV, Yanushevich OO. General nutritionology. Moscow: MEDpress-inform; 2005. 392 p. (In Russ.) EDN: QLKDOZ
  48. Frassetto LA, Morris RCJr, Sebastian A. Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol. 1996;271(6 Pt2):F1114–1122. doi: 10.1152/ajprenal.1996.271.6.F1114
  49. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95(7):791–797. doi: 10.1016/S0002-8223(95)00219-7
  50. Frassetto LA, Todd KM, Morris RCJr, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998;68(3):576–583. doi: 10.1093/ajcn/68.3.576
  51. Frassetto L, Morris RCJr, Sebastian A. Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. J Clin Endocrinol Metab. 1997;82(1):254–259. doi: 10.1210/jcem.82.1.3663
  52. Ludwig MG, Vanek M, Guerini D, et al. Proton-sensing G-protein-coupled receptors. Nature. 2003;425(6953):93–98. doi: 10.1038/nature01905
  53. Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein coupled receptors: a novel type of multi-functional receptors. Cell Signal. 2005;17(12):1466–1476. doi: 10.1016/j.cellsig.2005.06.002
  54. Frick KK, Krieger NS, Nehrke K, Bushinsky DA. Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. J Bone Miner Res. 2009;24(2):305–313. doi: 10.1359/jbmr.081015
  55. Arnett TR, Dempster DW. Effect of pH on bone resorption by rat osteoclasts in vitro. Endocrinology. 1986;119(1):119–124. doi: 10.1210/endo-119-1-119
  56. Komarova SV, Pereverzev A, Shum JW, et al. Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci U S A. 2005;102(7):2643–2648. doi: 10.1073/pnas.0406874102
  57. Moseley KF, Weaver CM, Appel L, et al. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. J Bone Miner Res. 2013;28(3):497–504. doi: 10.1002/jbmr.1764
  58. Tucker KL, Chen H, Hannan MT, et al. Bone mineral density and dietary patterns in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr. 2002;76(1):245–252. doi: 10.1093/ajcn/76.1.245
  59. Macdonald HM, New SA, Golden MH, et al. Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr. 2004;79(1):155–165. doi: 10.1093/ajcn/79.1.155
  60. Arterial hypertension in adults. Clinical guidelines 2020. Russian Society of Cardiology. Russian Journal of Cardiology. 2020;25(3):3786 (In Russ.) doi: 10.15829/1560-4071-2020-3-3786
  61. Carbohydrate intake for adults and children: WHO guideline [internet]. World Health Organization; 2023 [cited 17.01.2024] Available from: https://iris.who.int/bitstream/handle/10665/370420/9789240073593-eng.pdf?sequence=1
  62. Dedov II, Shestakova MV, Mayorov AYu, et al. Standards of specialized diabetes care. 11th edition. Diabetes mellitus. 2023;26(2S):1–157. doi: 10.14341/DM13042
  63. Obesity Clinical guidelines 2020 [Internet]. Russian Association of Endocrinologists; Society of Bariatric Surgeons [cited 17.01.2024]. Available from: https://cr.minzdrav.gov.ru/schema/28_2
  64. FitzGerald JD, Dalbeth N, Mikuls T, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020;72(6):744–760. doi: 10.1002/acr.24180
  65. Therapeutic nutrition: modern approaches to the standardization of diet therapy. Tutelyan VA, Gapparova MMG., Kaganova BS, Sharafetdinova HH, editors. 2nd ed. Moscow: "Dynasty"; 2010. 304 p. (In Russ.)
  66. Simon JA, Hudes ES. Serum ascorbic acid and other correlates of self-reported cataract among older Americans. J Clin Epidemiol. 1999;52(12):1207–1211. doi: 10.1016/s0895-4356(99)00110-9
  67. Ferrigno L, Aldigeri R, Rosmini F, et al. Associations between plasma levels of vitamins and cataract in the italian-american clinical trial of nutritional supplements and age-related cataract (CTNS): CTNS Report N. 2. Ophthalmic Epidemiol. 2005;12(2):71–80. doi: 10.1080/09286580590932815
  68. Christen WG, Liu S, Glynn RJ, et al. Dietary carotenoids, vitamins C and E, and risk of cataract in women: a prospective study. Arch Ophthalmol. 2008;126(1):102–109. doi: 10.1001/archopht.126.1.102
  69. National Nutrient Database for Standard Reference 2010 [Internet] USDA ARS Nutrient Data Laboratory [cited 17.01.2024]. Available from: www.nal.usda.gov/fnic/foodcomp/search/
  70. Public Health England, McCance and Widdowson's. The Composition of Foods. The Royal Society of Chemistry; 2002. Vol. 7. 644 p. doi: 10.1039/9781849735551
  71. Tutelyan VA. Chemical composition and calorie content of Russian food products. Moscow: Delhi Plus; 2012. 283 p. EDN: QMCSKV (In Russ.)
  72. Holden JM, Eldridge AL, Beecher GR, et al. Carotenoid content of U.S. foods: an update of the database. J Food Comp Analysis. 1999;12(3):169–196. doi: 10.1006/jfca.1999.0827
  73. Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015–1022. doi: 10.1016/j.jalz.2015.04.011
  74. Liu X, Morris MC, Dhana K, et al. Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) study: Rationale, design and baseline characteristics of a randomized control trial of the MIND diet on cognitive decline. Contemp Clin Trials. 2021;102:106270. doi: 10.1016/j.cct.2021.106270
  75. Barnes LL, Dhana K, Liu X, et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N Engl J Med. 2023;389(7):602–611. doi: 10.1056/NEJMoa2302368
  76. Alcohol and cancer in the WHO European Region: an appeal for better prevention [Internet] Copenhagen: WHO Regional Office for Europe, 2020 [cited 17.01.2024]. Available from: https://iris.who.int/bitstream/handle/10665/336595/WHO-EURO-2020-1435-41185-56004-eng.pdf?sequence=1
  77. Morris MC, Tangney CC, Wang Y, et al. MIND diet associated with reduced incidence of Alzheimer's disease. Alzheimers Dement. 2015;11(9):1007–1014. doi: 10.1016/j.jalz.2014.11.009
  78. Melo van Lent D, O'Donnell A, Beiser AS, et al. Mind Diet Adherence and Cognitive Performance in the Framingham Heart Study. J Alzheimers Dis. 2021;82(2):827–839. doi: 10.3233/JAD-201238
  79. Chen H, Dhana K, Huang Y, et al. Association of the Mediterranean Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) Diet ith the Risk of Dementia. JAMA Psychiatry. 2023;80(6):630–638. doi: 10.1001/jamapsychiatry.2023.0800
  80. Berendsen AM, Kang JH, Feskens EJM, et al. Association of long-term adherence to the MIND diet with cognitive function and cognitive decline in American women. J Nutr Health Aging. 2018;22(2):222–229. doi: 10.1007/s12603-017-0909-0
  81. Dhana K, James BD, Agarwal P, et al. MIND diet, common brain pathologies, and cognition in community-dwelling older adults. J Alzheimers Dis. 2021;83(2):683–692. doi: 10.3233/JAD-210107
  82. Pogozheva AV, Kodentsova VM. Risk groups for multiple vitamin and mineral deficiencies in the population. Clinical Nutrition and Metabolism. 2020;1(3):137–143. doi: 10.17816/clinutr48744

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies