Musculoskeletal disorders and coronary artery disease —promising molecular markers: literature review

Cover Page

Cite item

Full Text

Abstract

Currently, increasing evidence shows that people with cardiovascular diseases, including coronary heart disease, have a higher risk of developing pathologies such as sarcopenia, osteopenia, osteosarcopenia, sarcopenic, and osteosarcopenic obesity, which is associated with increased mortality risk. Musculoskeletal and adipose tissue changes have significantly affected the quality of life of patients and are important clinical problems. It is assumed that between the aforementioned disorders and coronary heart disease, a pathogenetic connection with the possibility of mutual aggravation exists. Accordingly, the search for relevant and accurate markers that reflect the severity and characterize the prognosis of a complex of pathological conditions is necessary given the increased proportion of patients in the general population with comorbidities. The article reviews the basic concepts of age-related disorders of body composition and molecular markers and emphasizes on new and potentially promising ones. The results can help in identifying and assessing the severity and prognosis of atherosclerosis, including coronary heart disease, and various disorders of musculoskeletal homeostasis, which reflects the commonality of their pathogenesis.

About the authors

Viktoria N. Karetnikova

Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University

Email: tori1071@mail.ru
ORCID iD: 0000-0002-9801-9839

MD, Dr. Sci. (Med.), Professor

Russian Federation, Kemerovo; Kemerovo

Anastasiya G. Neeshpapa

Research Institute for Complex Issues of Cardiovascular Diseases

Author for correspondence.
Email: anastasiyaneeshpapa@mail.ru
ORCID iD: 0000-0002-6808-9959

MD, Cand. Sci. (Med.)

Russian Federation, Kemerovo

Evgenia I. Carpova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: iameviss1@yandex.ru
ORCID iD: 0009-0005-9057-3535
Russian Federation, Kemerovo

Olga L. Barbarash

Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University

Email: karevn@kemcardio.ru
ORCID iD: 0000-0002-4642-3610

MD, Dr. Sci. (Med.), Professor, Academician of RAS

Russian Federation, Kemerovo; Kemerovo

References

  1. Casati M, Costa AS, Capitanio D, et al. The Biological Foundations of Sarcopenia: Established and Promising Markers. Front Med (Lausanne). 2019;(6):184. doi: 10.3389/fmed.2019.00184
  2. Lee K. Association of osteosarcopenic obesity and its components: osteoporosis, sarcopenia and obesity with insulin resistance. J Bone Miner Metab. 2020;38(5):695–701. doi: 10.1007/s00774-020-01104-2
  3. Keramidaki K, Tsagari A, Hiona M, Risvas G. Osteosarcopenic obesity, the coexistence of osteoporosis, sarcopenia and obesity and consequences in the quality of life in older adults ≥65 years-old in Greece. J Frailty Sarcopenia Falls. 2019;4(4):91–101. doi: 10.22540/JFSF-04-091
  4. Zhang N, Zhu WL, Liu XH, et al. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease. J Geriatr Cardiol. 2019;16(10):756–763. doi: 10.11909/j.issn.1671-5411.2019.10.002
  5. Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. Int J Mol Sci. 2020;21(2):494. doi: 10.3390/ijms21020494
  6. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169. Erratum in: Age Ageing. 2019;48(4):601.
  7. Uchida S, Kamiya K, Hamazaki N, et al. Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels. 2020;35(6):769–775. doi: 10.1007/s00380-020-01554-8
  8. He N, Zhang Y, Zhang L, et al. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front Cardiovasc Med. 2021;(8):743710. doi: 10.3389/fcvm.2021.743710
  9. Xia N, Cai Y, Wang W, et al. Association of bone-related biomarkers with femoral neck bone strength. BMC Musculoskelet Disord. 2022;23(1):482. doi: 10.1186/s12891-022-05427-1
  10. Khandkar C, Vaidya K, Karimi Galougahi K, Patel S. Low bone mineral density and coronary artery disease: A systematic review and meta-analysis. Int J Cardiol Heart Vasc. 2021;(37):100891. doi: 10.1016/j.ijcha.2021.100891
  11. den Uyl D, Nurmohamed MT, van Tuyl LH, et al. (Sub)clinical cardiovascular disease is associated with increased bone loss and fracture risk; a systematic review of the association between cardiovascular disease and osteoporosis. Arthritis Res Ther. 2011;13(1):R5. doi: 10.1186/ar3224
  12. Grebennikova TA, Tsoriev TT, Vorobeva JR, Belaya ZE. Osteosarcopenia: pathogenesis, diagnosis and therapeutic approaches. Annals of the Russian academy of medical sciences. 2020;75(3):240–249. doi: 10.15690/vramn1243
  13. Fahimfar N, Parsaiyan H, Khalagi K, et al. The Association of Cardiovascular Diseases Risk Scores and Osteosarcopenia Among Older Adult Populations: The Results of Bushehr Elderly Health (BEH) Program. Calcif Tissue Int. 2023;112(4):422–429. doi: 10.1007/s00223-022-01059-8
  14. Caffarelli C, Al Refaie A, Baldassini L, et al. Bone fragility, sarcopenia and cardiac calcifications in an elderly population: a preliminary study. Aging Clin Exp Res. 2023;35(5):1097–1105. doi: 10.1007/s40520-023-02393-z
  15. Park CH, Lee YT, Yoon KJ. Association between osteosarcopenia and coronary artery calcification in asymptomatic individuals. Sci Rep. 2022;12(1):2231. doi: 10.1038/s41598-021-02640-1
  16. Berns SA, Sheptulina AF, Mamutova EM, et al. Sarcopenic obesity: epidemiology, pathogenesis and diagnostic criteria. Cardiovascular Therapy and Prevention. 2023;22(6):78–85. doi: 10.15829/1728-8800-2023-3576
  17. Santana NM, Mendes RML, Silva NFD, Pinho CPS. Sarcopenia and sarcopenic obesity as prognostic predictors in hospitalized elderly patients with acute myocardial infarction. Einstein (Sao Paulo). 2019;17(4):eAO4632. doi: 10.31744/einstein_journal/2019AO4632
  18. Sato R, Okada K, Akiyama E, et al. Impact of sarcopenic obesity on long-term clinical outcomes after ST-segment elevation myocardial infarction. Atherosclerosis. 2021;(335):135–141. doi: 10.1016/j.atherosclerosis.2021.08.038
  19. Silveira EA, da Silva Filho RR, Spexoto MCB, et al. The Role of Sarcopenic Obesity in Cancer and Cardiovascular Disease: A Synthesis of the Evidence on Pathophysiological Aspects and Clinical Implications. Int J Mol Sci. 2021;22(9):4339. doi: 10.3390/ijms22094339
  20. Li F, Bai T, Ren Y, et al. A systematic review and meta-analysis of the association between sarcopenia and myocardial infarction. BMC Geriatr. 2023;23(1):11. doi: 10.1186/s12877-022-03712-1
  21. Hu K, Deya Edelen E, Zhuo W, et al. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites. 2023;13(10):1056. doi: 10.3390/metabo13101056
  22. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, et al. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev. 2018;(47):214–277. doi: 10.1016/j.arr.2018.07.004
  23. Sato R, Vatic M, da Fonseca GWP, von Haehling S. Sarcopenia and Frailty in Heart Failure: Is There a Biomarker Signature? Curr Heart Fail Rep. 2022;19(6):400–411. doi: 10.1007/s11897-022-00575-w
  24. Macari S, Madeira MFM, Lima ILA, et al. ST2 regulates bone loss in a site-dependent and estrogen-dependent manner. J Cell Biochem. 2018;119(10):8511–8521. doi: 10.1002/jcb.27080
  25. Hughes MF, Appelbaum S, Havulinna AS, et al. ST2 may not be a useful predictor for incident cardiovascular events, heart failure and mortality. Heart. 2014;100(21):1715–1721. doi: 10.1136/heartjnl-2014-305968
  26. Demyanets S, Speidl WS, Tentzeris I, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9(4):e95055. doi: 10.1371/journal.pone.0095055
  27. Zhang J, Chen Z, Ma M, He Y. Soluble ST2 in coronary artery disease: Clinical biomarkers and treatment guidance. Front Cardiovasc Med. 2022;(9):924461. doi: 10.3389/fcvm.2022.924461
  28. Alcalde-Estévez E, Asenjo-Bueno A, Sosa P, et al. Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging (Albany NY). 2020;12(12):11200–11223. doi: 10.18632/aging.103450
  29. Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. Nat Rev Cardiol. 2019;16(8):491–502. doi: 10.1038/s41569-019-0176-3
  30. Goudhaman L, Raja Jagadeesan A, Sundaramoorthi S, et al. Association of Serum Asymmetric Dimethylarginine with the Severity of Coronary Artery Disease: A Pilot Study. Rep Biochem Mol Biol. 2021;10(2):302–306. doi: 10.52547/rbmb.10.2.302
  31. Xie Z, Hou L, Shen S, et al. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation. Nat Commun. 2022;13(1):50. doi: 10.1038/s41467-021-27629-2
  32. Yokoro M, Otaki N, Yano M, et al. Association between asymmetric dimethylarginine and sarcopenia in community-dwelling older women. Sci Rep. 2023;13(1):5510. doi: 10.1038/s41598-023-32046-0
  33. Petermann-Rocha F, Gray SR, Pell JP, et al. Biomarkers Profile of People With Sarcopenia: A Cross-sectional Analysis From UK Biobank. J Am Med Dir Assoc. 2020;21(12):2017.e1–2017.e9. doi: 10.1016/j.jamda.2020.05.005
  34. Shin HE, Walston JD, Kim M, Won CW. Sex-Specific Differences in the Effect of Free Testosterone on Sarcopenia Components in Older Adults. Front Endocrinol (Lausanne). 2021;(12):695614. doi: 10.3389/fendo.2021.695614. Erratum in: Front Endocrinol (Lausanne). 2022;(13):876640.
  35. Kirby M, Hackett G, Ramachandran S. Testosterone and the Heart. Eur Cardiol. 2019;14(2):103–110. doi: 10.15420/ecr.2019.13.1
  36. Elagizi A, Köhler TS, Lavie CJ. Testosterone and Cardiovascular Health. Mayo Clin Proc. 2018;93(1):83–100. doi: 10.1016/j.mayocp.2017.11.006
  37. Islam RM, Bell RJ, Handelsman DJ, et al. Associations between blood sex steroid concentrations and risk of major adverse cardiovascular events in healthy older women in Australia: a prospective cohort substudy of the ASPREE trial. Lancet Healthy Longev. 2022;3(2):e109–e118. doi: 10.1016/S2666-7568(22)00001-0. Erratum in: Lancet Healthy Longev. 2023;4(8):e373.
  38. Heinze-Milne S, Banga S, Howlett SE. Low testosterone concentrations and risk of ischaemic cardiovascular disease in ageing: not just a problem for older men. Lancet Healthy Longev. 2022;3(2):e83–e84. doi: 10.1016/S2666-7568(22)00008-3
  39. Shigehara K, Izumi K, Kadono Y, Mizokami A. Testosterone and Bone Health in Men: A Narrative Review. J Clin Med. 2021;10(3):530. doi: 10.3390/jcm10030530
  40. Alalwan TA. Phenotypes of Sarcopenic Obesity: Exploring the Effects on Peri-Muscular Fat, the Obesity Paradox, Hormone-Related Responses and the Clinical Implications. Geriatrics (Basel). 2020;5(1):8. doi: 10.3390/geriatrics5010008
  41. Sergeeva NS, Karmakova TA, Alentov II, et al. Clinical significanse of prostate-specific antigen in breast cancer patients. Siberian journal of oncology. 2020;19(6):28–37. doi: 10.21294/1814-4861-2020-19-6-28-37
  42. Khosravi A, Nemati E, Soleimanian M, et al. Association between prostate specific antigen levels and coronary artery angioplasty. J Renal Inj Prev. 2016;6(2):132–136. doi: 10.15171/jrip.2017.26
  43. Lee JH, Jee BA, Kim JH, et al. Prognostic Impact of Sarcopenia in Patients with Metastatic Hormone-Sensitive Prostate Cancer. Cancers (Basel). 2021;13(24):6345. doi: 10.3390/cancers13246345
  44. Chang Y, Kim JH, Noh JW, et al. Prostate-Specific Antigen Within the Reference Range, Subclinical Coronary Atherosclerosis, and Cardiovascular Mortality. Circ Res. 2019;124(10):1492–1504. doi: 10.1161/CIRCRESAHA.118.313413
  45. Guo M, Yao J, Li J, et al. Irisin ameliorates age-associated sarcopenia and metabolic dysfunction. J Cachexia Sarcopenia Muscle. 2023;14(1):391–405. doi: 10.1002/jcsm.13141
  46. Supriya R, Singh KP, Gao Y, et al. A Multifactorial Approach for Sarcopenia Assessment: A Literature Review. Biology (Basel). 2021;10(12):1354. doi: 10.3390/biology10121354
  47. Fu J, Li F, Tang Y, et al. The Emerging Role of Irisin in Cardiovascular Diseases. J Am Heart Assoc. 2021;10(20):e022453. doi: 10.1161/JAHA.121.022453
  48. Zhao M, Zhou X, Yuan C, et al. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study. Sci Rep. 2020;10(1):16093. doi: 10.1038/s41598-020-73176-z
  49. Antuña E, Cachán-Vega C, Bermejo-Millo JC, et al. Inflammaging: Implications in Sarcopenia. Int J Mol Sci. 2022;23(23):15039. doi: 10.3390/ijms232315039
  50. Kirk B, Feehan J, Lombardi G, Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Curr Osteoporos Rep. 2020;18(4):388–400. doi: 10.1007/s11914-020-00599-y
  51. Colaianni G, Cuscito C, Mongelli T, et al. Irisin enhances osteoblast differentiation in vitro. Int J Endocrinol. 2014;(2014):902186. doi: 10.1155/2014/902186
  52. Anastasilakis AD, Koulaxis D, Kefala N, et al. Circulating irisin levels are lower in patients with either stable coronary artery disease (CAD) or myocardial infarction (MI) versus healthy controls, whereas follistatin and activin A levels are higher and can discriminate MI from CAD with similar to CK-MB accuracy. Metabolism. 2017;(73):1–8. doi: 10.1016/j.metabol.2017.05.002
  53. Kwon JH, Moon KM, Min KW. Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel). 2020;8(4):378. doi: 10.3390/healthcare8040378
  54. Bekki M, Hashida R, Kawaguchi T, et al. The association between sarcopenia and decorin, an exercise-induced myokine, in patients with liver cirrhosis: a pilot study. JCSM Rapid Communications. 2018;1(2):1–10. doi: 10.1002/j.2617-1619.2018.tb00009
  55. Baczek J, Silkiewicz M, Wojszel ZB. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;12(8):2401. doi: 10.3390/nu12082401
  56. Peng LN, Lee WJ, Liu LK, et al. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2018;9(4):635–642. doi: 10.1002/jcsm.12302
  57. Skrzypczak D, Skrzypczak-Zielińska M, Ratajczak AE, et al. Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines. 2021;9(10):1301. doi: 10.3390/biomedicines9101301
  58. Esposito P, Picciotto D, Battaglia Y, et al. Myostatin: Basic biology to clinical application. Adv Clin Chem. 2022;(106):181–234. doi: 10.1016/bs.acc.2021.09.006
  59. Oliveira PGS, Schwed JF, Chiuso-Minicucci F, et al. Association Between Serum Myostatin Levels, Hospital Mortality, and Muscle Mass and Strength Following ST-Elevation Myocardial Infarction. Heart Lung Circ. 2022;31(3):365–371. doi: 10.1016/j.hlc.2021.08.018
  60. Ahn SH, Jung HW, Lee E, et al. Decreased Serum Level of Sclerostin in Older Adults with Sarcopenia. Endocrinol Metab (Seoul). 2022;37(3):487–496. doi: 10.3803/EnM.2022.1428
  61. Kim JA, Roh E, Hong SH, et al. Association of serum sclerostin levels with low skeletal muscle mass: The Korean Sarcopenic Obesity Study (KSOS). Bone. 2019;(128):115053. doi: 10.1016/j.bone.2019.115053
  62. Courtalin M, Bertheaume N, Badr S, et al. Relationships between Circulating Sclerostin, Bone Marrow Adiposity, Other Adipose Deposits and Lean Mass in Post-Menopausal Women. Int J Mol Sci. 2023;24(6):5922. doi: 10.3390/ijms24065922
  63. Tobias JH. Sclerostin and Cardiovascular Disease. Curr Osteoporos Rep. 2023;21(5):519–526. doi: 10.1007/s11914-023-00810-w
  64. Frysz M, Gergei I, Scharnagl H, et al. Circulating Sclerostin Levels Are Positively Related to Coronary Artery Disease Severity and Related Risk Factors. J Bone Miner Res. 2022;37(2):273–284. doi: 10.1002/jbmr.4467
  65. Golledge J, Thanigaimani S. Role of Sclerostin in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2022;42(7):e187–e202. doi: 10.1161/ATVBAHA.122.317635
  66. Bian A, Ma Y, Zhou X, et al. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21(1):214. doi: 10.1186/s12891-020-03236-y
  67. Tritos NA, Biller BMK. Current concepts of the diagnosis of adult growth hormone deficiency. Rev Endocr Metab Disord. 2021;22(1):109–116. doi: 10.1007/s11154-020-09594-1
  68. Kopchick JJ, Berryman DE, Puri V, et al. The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nat Rev Endocrinol. 2020;16(3):135–146. doi: 10.1038/s41574-019-0280-9
  69. Cannarella R, Barbagallo F, Condorelli RA, et al. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J Clin Med. 2019;8(10):1564. doi: 10.3390/jcm8101564
  70. Obradovic M, Zafirovic S, Soskic S, et al. Effects of IGF-1 on the Cardiovascular System. Curr Pharm Des. 2019;25(35):3715–3725. doi: 10.2174/1381612825666191106091507
  71. Higashi Y, Gautam S, Delafontaine P, Sukhanov S. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019;(45):6–16. doi: 10.1016/j.ghir.2019.01.002
  72. Rudenka AV, Rudenka EV, Samokhovec VYu, et al. Association of vitamin D receptor gene polymorphism with a bone mineral density level in postmenopausal women. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2019;16(2):192–201. doi: 10.29235/1814-6023-2019-16-2-192-201
  73. Reid IR. Vitamin D Effect on Bone Mineral Density and Fractures. Endocrinol Metab Clin North Am. 2017;46(4):935–945. doi: 10.1016/j.ecl.2017.07.005
  74. Vaes AMM, Brouwer-Brolsma EM, Toussaint N, et al. The association between 25-hydroxyvitamin D concentration, physical performance and frailty status in older adults. Eur J Nutr. 2019;58(3):1173–1181. doi: 10.1007/s00394-018-1634-0
  75. Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–4345. doi: 10.1210/jc.2014-1742
  76. Kim YM, Kim S, Won YJ, Kim SH. Clinical Manifestations and Factors Associated with Osteosarcopenic Obesity Syndrome: A Cross-Sectional Study in Koreans with Obesity. Calcif Tissue Int. 2019;105(1):77–88. doi: 10.1007/s00223-019-00551-y
  77. Latic N, Erben RG. Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci. 2020;21(18):6483. doi: 10.3390/ijms21186483

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies