Interleukin-38 and cardiovascular pathology: literature review
- 作者: Alieva A.M.1, Baykova I.E.1, Pinchuk T.V.1, Kotikova I.A.1, Nikitin I.G.1
-
隶属关系:
- Pirogov Russian National Research Medical University
- 期: 卷 14, 编号 4 (2023)
- 页面: 283-293
- 栏目: Reviews
- URL: https://journals.rcsi.science/2221-7185/article/view/232032
- DOI: https://doi.org/10.17816/CS623020
- ID: 232032
如何引用文章
全文:
详细
Cardiovascular pathology is a leading cause of morbidity and mortality. An important task of modern cardiology is the search and study of new biological markers. Scientists’ interest is actively focused on the study of interleukin-38. Interleukin-38 is an anti-inflammatory cytokine and a member of the interleukin-1 family. This study aimed to analyze literature sources devoted to the study of interleukin-38 as a cardiovascular biological marker. Literature sources, including all relevant publications in PubMed (MEDLINE), RSCI, Google Scholar, and Science Direct, were analyzed. The search depth was 9 years. Interleukin-38 is found in the skin, heart, placenta, fetal liver, spleen, thymus, and activated B cells of the tonsils. Interleukin-38 protein is detected in human plasma, serum, and cell cultures by enzyme-linked immunosorbent assay. Interleukin-38 regulates immune and inflammatory responses by binding to its receptors and activating downstream signals. Its deficiency is associated with increased systemic inflammation in aging, cardiovascular diseases, and metabolic diseases. Currently, not much clinical and experimental data have been accumulated regarding the effect of interleukin-38 on the cardiovascular system; however, further studies are expected to demonstrate the possibility of its use as an additional laboratory tool for diagnosis and assessment of prognosis in patients with cardiac problems. Regulating the concentration and expression of interleukin-38 is a promising strategy for the treatment of cardiovascular diseases.
作者简介
Amina Alieva
Pirogov Russian National Research Medical University
编辑信件的主要联系方式.
Email: amisha_alieva@mail.ru
ORCID iD: 0000-0001-5416-8579
SPIN 代码: 2749-6427
MD, Cand. Sci. (Med.), associate professor
俄罗斯联邦, MoscowIrina Baykova
Pirogov Russian National Research Medical University
Email: 1498553@mail.ru
ORCID iD: 0000-0003-0886-6290
SPIN 代码: 3054-8884
MD, Cand. Sci. (Med.), associate professor
俄罗斯联邦, MoscowTatyana Pinchuk
Pirogov Russian National Research Medical University
Email: doktor2000@inbox.ru
ORCID iD: 0000-0002-7877-4407
SPIN 代码: 1940-2017
MD, Cand. Sci. (Med.), associate professor
俄罗斯联邦, MoscowIrina Kotikova
Pirogov Russian National Research Medical University
Email: kotikova.ia@mail.ru
ORCID iD: 0000-0001-5352-8499
SPIN 代码: 1423-7300
student
俄罗斯联邦, MoscowIgor Nikitin
Pirogov Russian National Research Medical University
Email: igor.nikitin.64@mail.ru
ORCID iD: 0000-0003-1699-0881
SPIN 代码: 3595-1990
MD, Dr. Sci. (Med.), Professor
俄罗斯联邦, Moscow参考
- Shlyakhto EV, Baranova EI. Central directions for reducing cardiovascular mortality: what can be changed today? Russian Journal of Cardiology. 2020;25(7):3983. (In Russ). doi: 10.15829/1560-4071-2020-3983
- Alieva AM, Golukhova EZ, Pinchuk TV. Heart rate variability in chronic heart failure (literature review). The Russian Archives of Internal Medicine. 2013;(6):47–52. (In Russ). doi: 10.20514/2226-6704-2013-0-6-47-52
- Kozhevnikova MV, Belenkov YuN. Biomarkers in Heart Failure: Current and Future. Kardiologiia. 2021;61(5):4–16. (In Russ). doi: 10.18087/cardio.2021.5.n1530
- Zhatkina MV, Metelskaya VA, Gavrilova NE, et al. Biochemical markers of coronary atherosclerosis: building models and assessing their prognostic value regarding the lesion severity. Russian Journal of Cardiology. 2021;26(6):4559. (In Russ). doi: 10.15829/1560-4071-2021-4559
- Aliyevа AM, Almazova II, Pinchuk TV, et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Clinical Medicine (Russian Journal). 2020;98(3):203–209. (In Russ). doi: 10.30629/0023-2149-2020-98-3-203-209
- Alieva AM, Pinchuk TV, Voronkova KV, et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021;23(10):756–759. (In Russ). doi: 10.26442/20751753.2021.10.201113
- Haghshenas MR, Zamir MR, Sadeghi M, et al. Clinical relevance and therapeutic potential of IL-38 in immune and non-immune-related disorders. Eur Cytokine Netw. 2022;33(3):54–69. doi: 10.1684/ecn.2022.0480
- de Graaf DM, Teufel LU, Joosten LAB, Dinarello CA. Interleukin-38 in Health and Disease. Cytokine. 2022;(152):155824. doi: 10.1016/j.cyto.2022.155824
- Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis. 2023;11(8):e991. doi: 10.1002/iid3.991
- Alieva AM, Kislyakov VA, Voronkova KV, et al. Interleukin-1 is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2022;12(6):422–429. (In Russ). doi: 10.20514/2226-6704-2022-12-6-422-429
- Lin H, Ho AS, Haley-Vicente D, et al. Cloning and characterization of IL-1HY2, a novel interleukin-1 family member. J Biol Chem. 2001;276(23):20597–20602. doi: 10.1074/jbc.M010095200
- Xia HS, Liu Y, Fu Y, et al. Biology of interleukin-38 and its role in chronic inflammatory diseases. Int Immunopharmacol. 2021;(95):107528. doi: 10.1016/j.intimp.2021.107528
- Li Z, Ding Y, Peng Y, et al. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol. 2022;(13):894002. doi: 10.3389/fimmu.2022.894002
- Mora J, Schlemmer A, Wittig I, et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J Mol Cell Biol. 2016;8(5):426–438. doi: 10.1093/jmcb/mjw006
- Teufel LU, de Graaf DM, Netea MG, et al. Circulating interleukin-38 concentrations in healthy adults. Front Immunol. 2022;(13):964365. doi: 10.3389/fimmu.2022.964365
- de Graaf DM, Teufel LU, van de Veerdonk FL, et al. IL-38 prevents induction of trained immunity by inhibition of mTOR signaling. J Leukoc Biol. 2021;110(5):907–915. doi: 10.1002/JLB.3A0220-143RRR
- van de Veerdonk FL, Stoeckman AK, Wu G, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci U S A. 2012;109(8):3001–3005. doi: 10.1073/pnas.1121534109
- Yuan XL, Li Y, Pan XH, et al. Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells. Mol Biol (Mosk). 2016;50(3):466–473. (In Russ). doi: 10.7868/S0026898416030137
- Han Y, Mora J, Huard A, et al. IL-38 Ameliorates Skin Inflammation and Limits IL-17 Production from γδ T Cells. Cell Rep. 2019;27(3):835.e5–846.e5. doi: 10.1016/j.celrep.2019.03.082
- Zarrabi M, Nazarinia M, Rahimi Jaberi A, et al. Elevated IL-38 Serum Levels in Newly Diagnosed Multiple Sclerosis and Systemic Sclerosis Patients. Med Princ Pract. 2021;30(2):146–153. doi: 10.1159/000510915
- Ge Y, Huang M, Wu Y, et al. Interleukin-38 protects against sepsis by augmenting immunosuppressive activity of CD4+ CD25+ regulatory T cells. J Cell Mol Med. 2020;24(2):2027–2039. doi: 10.1111/jcmm.14902
- Wei Y, Lan Y, Zhong Y, et al. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J Cell Mol Med. 2020;24(1):371–384. doi: 10.1111/jcmm.14741
- Sun X, Hou T, Cheung E, et al. Anti-inflammatory mechanisms of the novel cytokine interleukin-38 in allergic asthma. Cell Mol Immunol. 2020;17(6):631–-646. doi: 10.1038/s41423-019-0300-7
- de Graaf DM, Maas RJA, Smeekens SP, et al. Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease. Cytokine. 2021;(137):155334. doi: 10.1016/j.cyto.2020.155334
- Ge Y, Chen J, Hu Y, et al. IL-38 Alleviates Inflammation in Sepsis in Mice by Inhibiting Macrophage Apoptosis and Activation of the NLRP3 Inflammasome. Mediators Inflamm. 2021;(2021):6370911. doi: 10.1155/2021/6370911
- de Graaf DM, Jaeger M, van den Munckhof ICL, et al. Reduced concentrations of the B cell cytokine interleukin 38 are associated with cardiovascular disease risk in overweight subjects. Eur J Immunol. 2021;51(3):662–671. doi: 10.1002/eji.201948390
- Mainieri F, La Bella S, Chiarelli F. Hyperlipidemia and Cardiovascular Risk in Children and Adolescents. Biomedicines. 2023;11(3):809. doi: 10.3390/biomedicines11030809
- Cao J, Hua L, Zhang S, et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis. 2022;21(1):70. doi: 10.1186/s12944-022-01676-0
- Yang N, Song Y, Dong B, et al. Elevated Interleukin-38 Level Associates with Clinical Response to Atorvastatin in Patients with Hyperlipidemia. Cell Physiol Biochem. 2018;49(2):653–661. doi: 10.1159/000493029
- Yudaeva AD, Stafeev IS, Michurina SS, et al. The interactions between inflammation and insulin resistance: molecular mechanisms in insulin-producing and insulin-dependent tissues. Diabetes mellitus. 2023;26(1):75–81. (In Russ). doi: 10.14341/DM12981
- Jin X, Qiu T, Li L, et al. Pathophysiology of obesity and its associated diseases. Acta Pharm Sin B. 2023;13(6):2403–2424. doi: 10.1016/j.apsb.2023.01.012
- Huang G, Li M, Tian X, et al. The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications. Endocr Metab Immune Disord Drug Targets. 2022;22(10):997–1008. doi: 10.2174/1871530322666220113142533
- Xu K, Sun J, Chen S, et al. Hydrodynamic delivery of IL-38 gene alleviates obesity-induced inflammation and insulin resistance. Biochem Biophys Res Commun. 2019;508(1):198–202. doi: 10.1016/j.bbrc.2018.11.114
- Li Y, Chen S, Sun J, et al. Interleukin-38 inhibits adipogenesis and inflammatory cytokine production in 3T3-L1 preadipocytes. Cell Biol Int. 2020;44(11):2357–2362. doi: 10.1002/cbin.11428
- Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ). doi: 10.14341/DM12746
- Gurau F, Silvestrini A, Matacchione G, et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diabetes Res Clin Pract. 2021;(171):108585. doi: 10.1016/j.diabres.2020.108585
- Liu Y, Chen T, Zhou F, et al. Interleukin-38 increases the insulin sensitivity in children with the type 2 diabetes. Int Immunopharmacol. 2020;(82):106264. doi: 10.1016/j.intimp.2020.106264
- Kong P, Cui ZY, Huang XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther. 2022;7(1):131. doi: 10.1038/s41392-022-00955-7
- Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta. 2022;(536):86–93. doi: 10.1016/j.cca.2022.09.017
- Esmaeilzadeh A, Pouyan S, Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? Med Hypotheses. 2019;(125):139–143. doi: 10.1016/j.mehy.2019.02.048
- Li T, Yan Z, Fan Y, et al. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med. 2023;(9):1077290. doi: 10.3389/fcvm.2022.107729
- Zhong Y, Yu K, Wang X, et al. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm. 2015;(2015):490120. doi: 10.1155/2015/490120
- Yagudin TA, Shabanova AT, Liu H. Novel Aspects of Cardiac Ischemia and Reperfusion Injury Mechanisms. Creative surgery and oncology. 2018;8(3):216–224. (In Russ). doi: 10.24060/2076-3093-2018-8-3-216-224
- Wei Y, Xing J, Su X, et al. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation. Immun Inflamm Dis. 2023;11(6):e898. doi: 10.1002/iid3.898
- Yu Chen H, Dina C, Small AM, et al. Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study. Eur Heart J. 2023;44(21):1927–1939. doi: 10.1093/eurheartj/ehad142
- The E, de Graaf DM, Zhai Y, et al. Interleukin 38 alleviates aortic valve calcification by inhibition of NLRP3. Proc Natl Acad Sci U S A. 2022;119(36):e2202577119. doi: 10.1073/pnas.2202577119
- Ma J, Wu N, Yuan Z, et al. Prognostic value of interleukin-34 and interleukin-38 in patients with newly diagnosed atrial fibrillation. Front Cardiovasc Med. 2023;(9):1072164. doi: 10.3389/fcvm.2022.1072164
- Wu Z, Luo C, Zheng B. Progress of Research into the Interleukin-1 Family in Cardiovascular Disease. J Inflamm Res. 2022;(15):6683–6694. doi: 10.2147/JIR.S390915
- Kurose S, Matsubara Y, Yoshino S, et al. Interleukin-38 suppresses abdominal aortic aneurysm formation in mice by regulating macrophages in an IL1RL2-p38 pathway-dependent manner. Physiol Rep. 2023;11(2):e15581. doi: 10.14814/phy2.15581
- Xu F, Lin S, Yan X, et al. Interleukin 38 Protects Against Lethal Sepsis. J Infect Dis. 2018;218(7):1175–1184. doi: 10.1093/infdis/jiy289
补充文件
