Digital wearable devices in cardiac rehabilitation: patient need and satisfaction. Literature Review

Cover Page

Cite item

Full Text

Abstract

Currently there is a rapid progress in the new technologies development that expand the possibilities of home cardiac rehabilitation and telerehabilitation. It seems relevant to use wearable devices to monitor hemodynamic parameters, electrical activity of the heart, physical activity of patients in cardiac rehabilitation. This is especially important when monitoring the condition of elderly people and patients with comorbid conditions. The perspectives of sensors integration for assessment of not only hemodynamic parameters, but also the assessment of sensors that allow to monitor some metabolic indicators, human behavior are extremely important for cardiac patients. The use of digital technologies will significantly speed up the process of integrating cardiac rehabilitation into the general health care system. This will also allow to assess the need of high-quality medical care for the maximum of patients to whom it is indicated.

About the authors

Nadezhda P. Lyamina

Moscow Center for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Author for correspondence.
Email: lyana_n@mail.ru
ORCID iD: 0000-0001-6939-3234

D. Sci. (Med.), Prof.

Russian Federation, Moscow

Sergey V. Kharytonov

Russian State Research Center – Burnasyan Federal Medical Biophysical Center

Email: lyana_n@mail.ru
ORCID iD: 0000-0003-4445-5069

D. Sci. (Med.)

Russian Federation, Moscow

References

  1. Доклад Росздравнадзора об осуществлении федерального государственного контроля (надзора) качества и безопасности медицинской деятельности в 2021 году. Режим доступа: https://roszdravnadzor.gov.ru/. Ссылка активна на 23.06.2022 [Report of the Russian Federal Service for Surveillance in Healthcare on the implementation of federal state control (supervision) of the quality and safety of medical activities in 2021. Available at: https://roszdravnadzor.gov.ru/ Accessed: 23.06.2022 (in Russian)].
  2. Национальные проекты «Здравоохранение» и «Демография». Режим доступа: https://minzdrav.gov.ru/poleznye-resursy/natsproektzdravoohranenie. Ссылка активна на 23.06.2022 [Natsional'nye proekty «Zdravookhranenie» i «Demografiia». Available at: https://minzdrav.gov.ru/poleznye-resursy/natsproektzdravoohranenie. Accessed: 23.06.2022 (in Russian)].
  3. Цифровое здравоохранение в России: каким будет рынок после пандемии и как на него выйти. Режим доступа: https:Rusbase//rb.ru/opinion/digital-healthcare-in-russia/. Ссылка активна на 23.06.2022 [Tsifrovoe zdravookhranenie v Rossii: kakim budet rynok posle pandemii i kak na nego vyiti. Available at: https:Rusbase//rb.ru/opinion/digital-healthcare-in-russia/ Accessed: 23.06.2022 (in Russian)].
  4. Умные часы. Режим доступа: https://trends.google.ru/trends/explore?geo=RU&q=умные%20часы. Ссылка активна на 23.06.2022 [Umnye chasy. Available at: https://trends.google.ru/trends/explore?geo=RU&q=умные%20часы. Accessed: 23.06.2022 (in Russian)].
  5. Умные часы. Режим доступа: https://wordstat.yandex.ru/#!/?words=умные%20часы. Ссылка активна на 23.06.2022 [Umnye chasy. Available at: https://wordstat.yandex.ru/#!/?words=умные%20часы. Accessed: 23.06.2022 (in Russian)].
  6. Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med. 2018;15(5):429-48. doi: 10.2217/pme-2018-0044
  7. Majumder S, Mondal T, Deen MJ. Wearable Sensors for Remote Health Monitoring. Sensors (Basel). 2017;17(1):130. doi: 10.3390/s17010130
  8. Milewski K, Małecki A, Orszulik-Baron D, et al. The use of modern telemedicine technologies in an innovative optimal cardiac rehabilitation program for patients after myocardial revascularization: Concept and design of RESTORE, a randomized clinical trial. Cardiology J. 2019;26(5):594-603. doi: 10.5603/CJ.a2018.0157
  9. Steinberg JS, Varma N, Cygankiewicz I, et al. 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry. Ann Noninvasive Electrocardiol. 2017;22(3):e12447. doi: 10.1111/anec.12447
  10. Varma N, Cygankiewicz I, Turakhia M. Контроль аритмий с помощью технологий мобильного здравоохранения: цифровые медицинские технологии для специалистов по сердечному ритму. Консенсус экспертов 2021. Российский кардиологический журнал. 2021;26(1S):4420 [Varma N, Cygankiewicz I, Turakhia M. 2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Russian Journal of Cardiology. 2021;26(1S):4420 (in Russian)]. doi: 10.15829/1560-4071-2021-4420
  11. Бойцов С.А. Реалии и перспективы дистанционного мониторинга артериального давления у больных артериальной гипертензией. Терапевтический архив. 2018;90(1):4-8 [Boytsov SA. Realities and prospects of remote blood pressure monitoring in hypertensive patients. Terapevticheskii Arkhiv (Ter. Arkh.). 2018;90(1):4-8 (in Russian)]. doi: 10.17116/terarkh20189014-8
  12. Parati G, Pellegrini D, Torlasco C. How digital health can be applied for preventing and managing hypertension. Curr Hypertens Rep. 2019;21(5):40. doi: 10.1007/S11906-019-0940-0
  13. Tucker KL, Sheppard JP, Stevens R, et al. Self-monitoring of blood pressure in hypertension: a systematic review and individual patient data meta-analysis. PLOS Med. 2017;14(9):e1002389. doi: 10.1371/journal.pmed.1002389
  14. Choi WS, Choi JH, Oh J, et al. Effects of remote monitoring of blood pressure in management of urban hypertensive patients: a systematic review and meta-analysis. Telemed J E Health. 2020;26(6):744-59. doi: 10.1089/tmj.2019.0028
  15. Serhani MA, T El Kassabi H, Ismail H, Nujum Navaz A. ECG monitoring systems: review, architecture, processes, and key challenges. Sensors (Basel). 2020;20(6):1796. doi: 10.3390/s20061796
  16. Frederix I, Caiani EG, Dendale P, et al. ESC e-Cardiology Working Group Position Paper: Overcoming challenges in digital health implementation in cardiovascular medicine. Eur J Prev Cardiol. 2019;26(11):1166-77. doi: 10.1177/2047487319832394
  17. Kim Y, Park J-E, Lee B-W, et al. Comparative effectiveness of telemonitoring versus usual care for type 2 diabetes: a systematic review and meta-analysis. J Telemed Telecare. 2019;25(10):587-601. doi: 10.1177/1357633X18782599
  18. Deep Knowledge Ventures. Health Tech Mobile Apps. Landscape Overview 2018. Available at: http://analytics.dkv.global. Accessed: 23.06.2022.
  19. Koehler F, Koehler K, Prescher S, et al. Mortality and morbidity 1 year after stopping a remote patient management intervention: extended follow-up results from the telemedical interventional management in patients with heart failure II (TIM-HF2) randomised trial. Lancet Digit Health. 2020;2(1):e16-24. doi: 10.1016/S2589-7500(19)30195-5
  20. Midaglia L, Mulero P, Montalban X, et al. Adherence and Satisfaction of Smartphone- and Smartwatch-Based Remote Active Testing and Passive Monitoring in People With Multiple Sclerosis: Nonrandomized Interventional Feasibility Study. J Med Internet Res. 2019;21(8):e14863. doi: 10.2196/14863
  21. Anderson L, Thompson DR, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016;67(1):1-12. doi: 10.1002/14651858.CD001800.pub3
  22. Smart N, Haluska B, Jeffriess L, Marwick TH. Predictors of a sustained response to exercise training in patients with chronic heart failure: a telemonitoring study. Am Heart J. 2005;150(6):1240-7. doi: 10.1016/j.ahj.2005.01.035
  23. Piotrowicz E, Zieliński T, Bodalski R, et al. Home-based telemonitored Nordic walking training is well accepted, safe, effective and has high adherence among heart failure patients, including those with cardiovascular implantable electronic devices – a randomized controlled study. Eur J Prev Cardiol. 2015;22(11):1368-77. doi: 10.1177/2047487314551537
  24. Piotrowicz E, Piotrowski W, Piotrowicz R. Positive Effects of the Reversion of Depression on the Sympathovagal Balance after Telerehabilitation in Heart Failure Patients. Ann Noninvasive Electrocardiol. 2016;21(4):358-68. doi: 10.1111/anec.12320
  25. Zwisler AD, Norton RJ, Dean SG, et al. Home-based cardiac rehabilitation for people with heart failure: A systematic review and meta-analysis. Int J Cardiol. 2016;221:963-9. doi: 10.1016/j.ijcard.2016.06.207
  26. Hodkinson A, Kontopantelis E, Adeniji C, et al. Interventions Using Wearable Physical Activity Trackers Among Adults With Cardiometabolic Conditions: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(7):e2116382. doi: 10.1001/jamanetworkopen.2021.16382
  27. Varnfield M, Karunanithi M, Lee CK, et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: results from a randomised controlled trial. Heart. 2014;100(22):1770-9. doi: 10.1136/heartjnl-2014-305783
  28. Batalik L, Dosbaba F, Hartman M, et al. Rationale and design of randomized controlled trial protocol of cardiovascular rehabilitation based on the use of telemedicine technology in the Czech Republic (CR-GPS). Medicine (Baltimore). 2018;97(37):e12385. doi: 10.1097/MD.0000000000012385
  29. Brickwood KJ, Watson G, O'Brien J, Williams AD. Consumer-Based Wearable Activity Trackers Increase Physical Activity Participation: Systematic Review and Meta-Analysis. JMIR Mhealth Uhealth. 2019;7(4):e11819. doi: 10.2196/11819
  30. Wright SP, Hall Brown TS, Collier SR, Sandberg K. How consumer physical activity monitors could transform human physiology research. Am J Physiol Regul Integr Comp Physiol. 2017;312(3):R358-67. doi: 10.1152/ajpregu.00349.2016
  31. Schlomann A, Seifert A, Rietz C. Relevance of Activity Tracking With Mobile Devices in the Relationship Between Physical Activity Levels and Satisfaction With Physical Fitness in Older Adults: Representative Survey. JMIR Aging. 2019;2(1):e12303. doi: 10.2196/12303
  32. Evans J, Papadopoulos A, Silvers CT, et al. Remote Health Monitoring for Older Adults and Those with Heart Failure: Adherence and System Usability. Telemed J E Health. 2016;22(6):480-8. doi: 10.1089/tmj.2015.0140
  33. Sharma A, Mentz RJ, Granger BB, et al. Utilizing mobile technologies to improve physical activity and medication adherence in patients with heart failure and diabetes mellitus: Rationale and design of the TARGET-HF-DM Trial. Am Heart J. 2019;211:22-33. doi: 10.1016/j.ahj.2019.01.007
  34. Lu TC, Fu CM, Ma MH, et al. Healthcare Applications of Smart Watches. A Systematic Review. Appl Clin Inform. 2016;7(3):850-69. doi: 10.4338/ACI-2016-03-R-0042
  35. Trayanova N. From genetics to smart watches: developments in precision cardiology. Nat Rev Cardiol. 2019;16(2):72-3. doi: 10.1038/s41569-018-0149-y
  36. Koshy AN, Sajeev JK, Nerlekar N, et al. Smart watches for heart rate assessment in atrial arrhythmias. Int J Cardiol. 2018;266:124-7. doi: 10.1016/j.ijcard.2018.02.073
  37. Sajeev JK, Koshy AN, Teh AW. Wearable devices for cardiac arrhythmia detection: a new contender? Intern Med J. 2019;49(5):570-3. doi: 10.1111/imj.14274
  38. Maeda Y, Sekine M, Tamura T. Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography. J Med Syst. 2011;35(5):969-76. doi: 10.1007/s10916-010-9505-0
  39. Andrès E, Meyer L, Zulfiqar AA, et al. Telemonitoring in diabetes: evolution of concepts and technologies, with a focus on results of the more recent studies. J Med Life. 2019;12(3):203-14. doi: 10.25122/jml-2019-0006
  40. Garabedian LF, Ross-Degnan D, Wharam JF. Mobile Phone and Smartphone Technologies for Diabetes Care and Self-Management. Curr Diab Rep. 2015;15(12):109. doi: 10.1007/s11892-015-0680-8
  41. Chang SH, Wu LS, Chiou MJ, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and in vitro studies. Cardiovascul Diabetol. 2014;13:123. doi: 10.1186/s12933-014-0123-x
  42. Maceira-Elvira P, Popa T, Schmid AC, Hummel FC. Wearable technology in stroke rehabilitation: towards improved diagnosis and treatment of upper-limb motor impairment. J Neuroeng Rehabil. 2019;16(1):142. doi: 10.1186/s12984-019-0612-y
  43. Johansson D, Malmgren K, Alt Murphy M. Wearable sensors for clinical applications in epilepsy, Parkinson's disease, and stroke: a mixed-methods systematic review. J Neurol. 2018;265(8):1740-52. doi: 10.1007/s00415-018-8786-y
  44. Zwisler AD, Norton RJ, Dean SG, et al. Home-based cardiac rehabilitation for people with heart failure: A systematic review and meta-analysis. Int J Cardiol. 2016;221:963-9. doi: 10.1016/j.ijcard.2016.06.207
  45. Haghi M, Thurow K, Stoll R. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Healthc Inform Res. 2017;23(1):4-15. doi: 10.4258/hir.2017.23.1.4
  46. Piepoli MF, Hoes AW, Agewall S, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315-81. doi: 10.1093/eurheartj/ehw106
  47. Frederix I, Driessche NV, Hansen D, et al. Increasing the medium-term clinical benefits of hospital-based cardiac rehabilitation by physical activity telemonitoring in coronary artery disease patients. Eur J Prev Cardiol. 2015;22(2):150-8. doi: 10.1177/2047487313514018
  48. Song Y, Ren C, Liu P, et al. Effect of Smartphone-Based Telemonitored Exercise Rehabilitation among Patients with Coronary Heart Disease. J Cardiovasc Transl Res. 2020;13(4):659-67. doi: 10.1007/s12265-019-09938-6
  49. Tse G, Chan C, Gong M, et al. Telemonitoring and hemodynamic monitoring to reduce hospitalization rates in heart failure: a systematic review and meta-analysis of randomized controlled trials and real-world studies. J Geriatr Cardiol. 2018;15(4):298-309. doi: 10.11909/j.issn.1671-5411.2018.04.008
  50. Stojanova A, Koceski S, Koceska N. Continuous Blood Pressure Monitoring as a Basis for Ambient Assisted Living (AAL) – Review of Methodologies and Devices. J Med Syst. 2019;43(2):24. doi: 10.1007/s10916-018-1138-8
  51. Klarskov P, Bang LE, Schultz-Larsen P, et al. Intensive versus conventional blood pressure monitoring in a general practice population. The Blood Pressure Reduction in Danish General Practice trial: a randomized controlled parallel group trial. Fam Pract. 2018;35(4):433-9. doi: 10.1093/fampra/cmx106
  52. Guo Y, Lane DA, Chen Y, Lip GYH. Mobile Health Technologies Facilitate Population Screening and Integrated Service Management in Patients with Atrial Fibrillation: Observations from the Huawei Heart Study and the mAFA II Randomized Trial. Eur Heart J. 2020;41(17):1617-9. doi: 10.1093/eurheartj/ehaa161
  53. Agboola S, Jethwani K, Khateeb K, et al. Heart failure remote monitoring: evidence from the retrospective evaluation of a real-world remote monitoring program. J Med Internet Res. 2015;17(4):e101. doi: 10.2196/jmir.4417
  54. Stehlik J, Schmalfuss C, Bozkurt B, et al. Continuous Wearable Monitoring Analytics Predict Heart Failure Hospitalization The LINK-HF Multicenter Study. Circ Heart Fail. 2020;13(3):e006513. doi: 10.1161/CIRCHEARTFAILURE.119.006513
  55. Albahri OS, Zaidan AA, Zaidan BB, et al. Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects. J Med Syst. 2018;42(9):164. doi: 10.1007/s10916-018-1006-6
  56. Loncar-Turukalo T, Zdravevski E, Machado da Silva J, et al. Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers. J Med Internet Res. 2019;21(9):e14017. doi: 10.2196/14017
  57. Skobel E, Martinez-Romero A, Scheibe B, et al. Evaluation of a newly designed shirt-based ECG and breathing sensor for home-based training as part of cardiac rehabilitation for coronary artery disease. Eur J Prev Cardiol. 2014;21(11):1332-40. doi: 10.1177/2047487313493227
  58. Лямина Н.П., Котельникова Е.В. Мобильные технологии как инструмент интеграции программ кардиологической реабилитации в систему динамического наблюдения пациентов с хронической сердечной недостаточностью. Вестник восстановительной медицины. 2017;5(81):25-32 [Lyamina NP, Kotelnikova EV. Mobile technologies as a tool for integrating cardiac rehabilitation programs into the system of dynamic monitoring of patients with chronic heart failure. Bulletin of Rehabilitation Medicine. 2017;5(81):25-32 (in Russian)].
  59. Лямина Н.П., Котельникова Е.В. Пациент-ориентированная модель организации реабилитационной помощи на основе интернет-технологий. Вестник восстановительной медицины. 2017;1(77):96-102 [Lyamina NP, Kotelnikova EV. Patient-oriented model of rehabilitation care organization based on internet technologies. Bulletin of Rehabilitation Medicine. 2017;1(77):96-102 (in Russian)].
  60. Sprogis SK, Currey J, Considine J. Patient acceptability of wearable vital sign monitoring technologies in the acute care setting: A systematic review. J Clin Nurs. 2019;28(15-16):2732-44. doi: 10.1111/jocn.14893
  61. Atreja A, Francis S, Kurra S, Kabra R. Digital Medicine and Evolution of Remote Patient Monitoring in Cardiac Electrophysiology: A State-of-the-Art Perspective. Curr Treat Options Cardiovasc Med. 2019;21(12):92. doi: 10.1007/s11936-019-0787-3
  62. Dickinson MG, Allen LA, Albert NA, et al. Remote Monitoring of Patients With Heart Failure: A White Paper From the Heart Failure Society of America Scientific Statements Committee. J Card Fail. 2018;24(10):682-94. doi: 10.1016/j.cardfail.2018.08.011
  63. Nelson EC, Verhagen T, Vollenbroek-Hutten M, Noordzij ML. Is Wearable Technology Becoming Part of Us? Developing and Validating a Measurement Scale for Wearable Technology Embodiment. JMIR Mhealth Uhealth. 2019;7(8):e12771. doi: 10.2196/12771
  64. Lee SM, Lee D. Healthcare wearable devices: an analysis of key factors for continuous use intention. Serv Bus. 2020;14(4):503-31. doi: 10.1007/s11628-020-00428-3
  65. Vegesna A, Tran M, Angelaccio M, Arcona S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed J E Health. 2017;23(1):3-17. doi: 10.1089/tmj.2016.0051
  66. Dias D, Paulo Silva Cunha J. Wearable Health Devices-Vital Sign Monitoring, Systems and Technologies. Sensors (Basel). 2018;18(8):2414. doi: 10.3390/s18082414
  67. Lopez Perales CR, Van Spall HGC, Maeda S, et al. Mobile health applications for the detection of atrial fibrillation: a systematic review. Europace. 2021;23(1):11-28. doi: 10.1093/europace/euaa139
  68. Dörr M, Nohturfft V, Brasier N, et al. The WATCH AF Trial: SmartWATCHes for Detection of Atrial Fibrillation. JACC Clin Electrophysiol. 2019;5(2):199-208. doi: 10.1016/j.jacep.2018.10.006
  69. Bumgarner JM, Lambert CT, Hussein AA, et al. Smartwatch Algorithm for Automated Detection of Atrial Fibrillation. J Am Coll Cardiol. 2018;71(21):2381-8. doi: 10.1016/j.jacc.2018.03.003
  70. Perez MV, Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019;381(20):1909-17. doi: 10.1056/NEJMoa1901183
  71. Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med. 2020;30(7):442-8. doi: 10.1016/j.tcm.2019.10.010
  72. Garabelli P, Stavrakis S, Po S. Smartphone-based arrhythmia monitoring. Curr Opin Cardiol. 2017;32(1):53-7. doi: 10.1097/HCO.0000000000000350
  73. Rastegar S, GholamHosseini H, Lowe A. Non-invasive continuous blood pressure monitoring systems: current and proposed technology issues and challenges. Australas Phys Eng Sci Med. 2019. doi: 10.1007/s13246-019-00813-x
  74. Margolis KL, Asche SE, Dehmer SP, et al. Long-term Outcomes of the Effects of Home Blood Pressure Telemonitoring and Pharmacist Management on Blood Pressure Among Adults With Uncontrolled Hypertension: Follow-up of a Cluster Randomized Clinical Trial. JAMA Netw Open. 2018;1(5):e181617. doi: 10.1001/jamanetworkopen.2018.1617
  75. Cai Z, Luo K, Liu C, Li J. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board. Technol Health Care. 2017;25(4):815-21. doi: 10.3233/THC-170828
  76. Khundaqji H, Hing W, Furness J, Climstein M. Smart Shirts for Monitoring Physiological Parameters: Scoping Review. JMIR Mhealth Uhealth. 2020;8(5):e18092. doi: 10.2196/18092
  77. Teferra MN, Ramos JS, Kourbelis C, et al. Electronic textile-based electrocardiogram monitoring in cardiac patients: a scoping review. JBI Database System Rev Implement Rep. 2019;17(10):1958-98. doi: 10.11124/JBISRIR-2017-003989
  78. Gaffar S, Gearhart AS, Chang AC. The Next Frontier in Pediatric Cardiology: Artificial Intelligence. Pediatr Clin North Am. 2020;67(5):995-1009. doi: 10.1016/j.pcl.2020.06.010
  79. Denecke K, Gabarron E, Grainger R, et al. Artificial Intelligence for Participatory Health: Applications, Impact, and Future Implications. Yearb Med Inform. 2019;28(1):165-73. doi: 10.1055/s-0039-1677902
  80. Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2(10):719-31. doi: 10.1038/s41551-018-0305-z
  81. Krittanawong C, Johnson KW, Rosenson RS, et al. Deep learning for cardiovascular medicine: a practical primer. Eur Heart J. 2019;40(25):2058-73. doi: 10.1093/eurheartj/ehz056
  82. Dorado-Díaz PI, Sampedro-Gómez J, Vicente-Palacios V, Sánchez PL. Applications of Artificial Intelligence in Cardiology. The Future is Already Here. Rev Esp Cardiol (Engl Ed). 2019;72(12):1065-75. doi: 10.1016/j.rec.2019.05.014
  83. Muzny M, Henriksen A, Giordanengo A, et al. Dataset of wearable sensors with possibilities for data exchange. Data Brief. 2019;28:104978. doi: 10.1016/j.dib.2019.104978
  84. Hudson LR, Hamar GB, Orr P, et al. Remote physiological monitoring: clinical, financial, and behavioral outcomes in a heart failure population. Dis Manag. 2005;8(6):372-81. doi: 10.1089/dis.2005.8.372
  85. Schukat M, McCaldin D, Wang K, et al. Unintended Consequences of Wearable Sensor Use in Healthcare. Contribution of the IMIA Wearable Sensors in Healthcare WG. Yearb Med Inform. 2016;(1):73-86. doi: 10.15265/IY-2016-025
  86. Kruger DJ, Djerf JM. High Ringxiety: Attachment Anxiety Predicts Experiences of Phantom Cell Phone Ringing. Cyberpsychol Behav Soc Netw. 2016;19(1):56-9. doi: 10.1089/cyber.2015.0406
  87. Saunders KE, Bilderbeck AC, Panchal P, et al. Experiences of remote mood and activity monitoring in bipolar disorder: A qualitative study. Eur Psychiatry. 2017;41:115-21. doi: 10.1016/j.eurpsy.2016.11.005
  88. Tanil CT, Yong MH. Mobile phones: The effect of its presence on learning and memory. PLoS One. 2020;15(8):e0219233. doi: 10.1371/journal.pone.0219233

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies