Variability of Educational Trajectories in an Intergenerational Context: From Simple to Complex Strategies

Cover Page

Cite item

Full Text

Abstract

The article presents the results of a sociological analysis of changes in the educational behaviour of various groups of the Russian population. This analysis is significant because education is one of those social domains that are associated with the accumulation and application of human capital. The latter is relevant not only to the stage of modern socioeconomic development but also to the current geopolitical situation. Theoretical and methodological approaches to studying the social behaviour of various population groups in these areas are multidimensional. In this article, the primary focus of research is on educational and professional trajectories and strategies. The author defines these concepts, emphasising the non-synonymous nature of trajectories and strategies.
The objective of the article is to clarify the dynamics of educational trajectories of different generations. The length, content, and variability of educational trajectories in an intergenerational context are being analysed. The empirical basis is formed by the combined RLMS HSE database for individuals from 1994 to 2021, that identifies six generations of Russians according to the classification proposed by V.V. Radaev. An exploratory analysis of the 30th wave of the survey allowed us to identify four generations for further comparative analysis: the "stagnation" generation, the "reform" generation, the millennial generation, and the zoomer generation – 25%, 19.8%, 24.1%, and 24.6% of the total number of respondents in 2021, respectively.
A substantive analysis of the educational and professional trajectories of 16,465 respondents was conducted. A typology of their educational trajectories is proposed: direct, multi-component, shortest, absent, and extended. An increase in the proportion of those choosing multi-component trajectories among representatives of the millennial and zoomer generations is demonstrated. The conditions for implementing the chosen educational and professional strategy are examined, as well as the combination of factors associated with the choice of a direct or multi-component educational trajectory.
It was found that, while the median lengths of educational trajectories for different Russian generations, expressed in years of schooling, are similar, their variability and fullness are not homogeneous. On the one hand, the increasing number of young people among millennials and zoomers choosing multi-component trajectories for vocational education is associated with the development of vocational education. On the other hand, from the perspective of practical recommendations and social management in education and the labour market, it is a priority to note the relative flexibility of the Russian vocational education system, that allows for the reduction of inequality in educational opportunities.

About the authors

Ekaterina S. Popova

Institute of Sociology of FCTAS RAS

Email: espopova@isras.ru
ORCID iD: 0000-0002-9808-3152
SPIN-code: 8104-9095
ResearcherId: I-6734-2016
Candidate of Sociological Sciences, Leading Researcher Moscow, Russia

References

  1. Бессуднов А. Р., Куракин Д. Ю. и др. Как возник и что скрывает миф о всеобщем высшем образовании // Вопросы образования. 2017. № 3. С. 83–109. doi: 10.17323/1814-9545-2017-3-83-109; EDN: ZHRDRF.
  2. Бессуднов А. Р., Малик В. М. Социально-экономическое и гендерное неравенство при выборе образовательной траектории после окончания 9-го класса средней школы // Вопросы образования. 2016. № 1. C. 135–167. doi: 10.17323/1814-9545-2016-1-135-167; EDN: TNQFPW.
  3. Богданов М. Б., Малик В. М. Как сочетаются социальное, территориальное и гендерное неравенства в образовательных траекториях молодежи России? // Мониторинг общественного мнения: экономические и социальные перемены. 2020. № 3. С. 391–421. doi: 10.14515/monitoring.2020.3.1603; EDN: NBXFVU.
  4. Бурдье П., Пассрон Ж.-К. Воспроизводство: элементы теории системы образования / Пер. с фр.; ред. Н. А. Шматко. М.: Просвещение, 2007. 267 с.
  5. Груздев А. В. Прогнозное моделирование в IBM SPSS Statistics и R: Метод деревьев решений. М.: ДМК Пресс, 2016. 278 с.
  6. Капелюшников Р. И. Российский рынок труда: статистический портрет на фоне кризисов: препринт WP3/2023/02. М.: ВШЭ, 2023. 78 с.
  7. Константиновский Д. Л. Неравенство и образование. Опыт социологических исследований жизненного старта российской молодежи (1960-е годы – начало 2000-х). М.: ЦСО, 2008. 551 с.
  8. Константиновский Д. Л., Попова Е. С. От восприятия перемен – к изменению социального поведения // Мир России. Социология. Этнология. 2022. № 31(1). С. 6–24. doi: 10.17323/1811-038X-2022-31-1-6-24; EDN: MQXZOT.
  9. Константиновский Д. Л., Попова Е. С. Образовательная стратификация в российских городах // Городские миры России и Китая: модернизация и ее влияние / Отв. ред. М. К. Горшков, Ли Пэйлинь и др. М.: Новый Хронограф, 2023. С. 294–332. doi: 10.19181/monogr.978-5-89697-415-4.2023; EDN: UWCMGA.
  10. Косякова Ю., Куракин Д. Ю. и др. Воспроизводство социального неравенства в российской образовательной системе // Журнал социологии и социальной антропологии. 2016. Т. XIX. № 5(88). С. 76–97.
  11. Радаев В. В. Миллениалы: как меняется российское общество. 2-е изд. М.: ВШЭ, 2020. 224 с. doi: 10.17323/978-5-7598-2160-1.
  12. Breiman L. Random Forests // Machine Learning. 2001. No 1(45). P. 5–32. doi: 10.1023/A:1010933404324.
  13. Coleman J. et al. Equality of educational opportunity. Washington D. C.: U. S. Government Printing Office, 1966. 548 p.
  14. Gregorutti B., Michel B. et al. Correlation and variable importance in random forests // Statistics and Computing. 2017. No. 3(27). P. 659–678. doi: 10.1007/s11222-016-9646-1.
  15. Hindman M. Building Better Models: Prediction, Replication, and Machine Learning in the Social Sciences // The ANNALS of the American Academy of Political and Social Science. 2015. No. 1(659). P. 48–62. doi: 10.1177/0002716215570279.
  16. Montgomery J. M., Hollenbach F. M. et al. Improving Predictions Using Ensemble Bayesian Model Averaging // Political Analysis. 2012. No. 3(20). P. 271–291.
  17. Siroky D. S. Navigating Random Forests and related advances in algorithmic modeling // Statistics Surveys. 2009. No. 3. P. 147–163. doi: 10.1214/07-SS033.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).