Методы визуализации для изучения взаимодействий вирус–клетка: обзор современных методов и проблем
- Авторы: Сингх С.1, Джайн С.1, Шарма С.1, Васундхара В.1
-
Учреждения:
- Университет Тиртханкер Махавир
- Выпуск: Том 15, № 4 (2025)
- Страницы: 635-648
- Раздел: ОБЗОРЫ
- URL: https://journals.rcsi.science/2220-7619/article/view/352113
- DOI: https://doi.org/10.15789/2220-7619-ITF-17917
- ID: 352113
Цитировать
Полный текст
Аннотация
Знание взаимодействия вируса и клетки-хозяина имеет решающее значение для разработки противовирусной терапии и вакцин. Из-за своего наномасштабного размера и динамической природы вирусы являются сложными объектами для исследования. Характеризация вирусов при помощи визуализация вирусных структур, внутриклеточного вирусного трафика и молекулярных механизмов инфекции, в значительной степени опиралась на сложные технологические подходы. Классическая световая микроскопия, такая как флуоресцентная микроскопия и микроскопия сверхвысокого разрешения, предоставляет информацию о проникновении вируса, репликации и локализации белка в живых клетках. Методы электронной микроскопии (ЭМ), такие как просвечивающая электронная микроскопия (ПЭМ), сканирующая электронная микроскопия (СЭМ) и криоэлектронная микроскопия (крио-ЭМ), предоставляют структурные данные высокого разрешения о вирусах и их репликационных компартментах. Достижения в области корреляционных методов визуализации, которые включают световую и электронную микроскопию, улучшили возможность изучать вызванные вирусом клеточные изменения в трех измерениях. Но по сравнению с более ранними разработками, визуализация вирусов остается сложной из-за компромисса между разрешением и подготовкой образцов, ограничений в методах маркировки, проблемы визуализации быстрых взаимодействий вируса с хозяином и ограничения биологической безопасности для высокопатогенных вирусов [9]. Решения таких проблем будут предоставлены с помощью новых методов, таких как анализ изображений на основе ИИ, зондов для визуализации на основе нанотехнологий и криоэлектронной томографии. В настоящем обзоре рассматриваются современные методы визуализации в вирусологии, их применимость и ограничения, а также будущие перспективы с акцентом на микроскопию для распознавания взаимодействия вирусов с клетками [50].
Полный текст
Открыть статью на сайте журналаОб авторах
С. Сингх
Университет Тиртханкер Махавир
Email: jainsanjeevkumar77@gmail.com
профессор кафедры микробиологии, Медицинский колледж и исследовательский центр
Индия, Морадабад, Уттар-ПрадешСанджив Кумар Джайн
Университет Тиртханкер Махавир
Автор, ответственный за переписку.
Email: jainsanjeevkumar77@gmail.com
Кафедра анатомии, Медицинский колледж и исследовательский центр
Индия, Морадабад, Уттар-ПрадешС. Шарма
Университет Тиртханкер Махавир
Email: jainsanjeevkumar77@gmail.com
доцент кафедры анатомии, Медицинский колледж и исследовательский центр
Индия, Морадабад, Уттар-ПрадешВасундхара Васундхара
Университет Тиртханкер Махавир
Email: jainsanjeevkumar77@gmail.com
профессор кафедры микробиологии, Медицинский колледж и исследовательский центр
Индия, Морадабад, Уттар-ПрадешСписок литературы
- Bernhard O.K., Diefenbach R.J., Cunningham A.L. New insights into viral structure and virus–cell interactions through proteomics. Expert Rev. Proteomics, 2005, vol. 2, no. 4, pp. 577–588. doi: 10.1586/14789450.2.4.577
- Bykov Y.S., Cortese M., Briggs J.A.G., Bartenschlager R. Correlative light and electron microscopy methods for the study of virus–cell interactions. FEBS Lett., 2016, vol. 590, no. 13, pp. 1877–1895. doi: 10.1002/1873-3468.12153
- Chen T., Tu S., Ding L., Jin M., Chen H., Zhou H. The role of autophagy in viral infections. J. Biomed. Sci., 2023, vol. 30, no. 1: 5. doi: 10.1186/s12929-023-00899-2
- Cole R. Live-cell imaging. Cell Adh. Migr., 2014, vol. 8, no. 5, pp. 452–459. doi: 10.4161/cam.28348
- Cornish N.E., Anderson N.L., Arambula D.G., Arduino M.J., Bryan A., Burton N.C., Cohn A.C., Dallas S.D., Gerber S.I., Hayden R.T., Huang J., Jerris R.C., Kocagöz S., Kocagöz T., Kuhar D.T., Larone D.H., Mahoney M.V., Perkins K.M., Polage C.R., Raney K.D., Richter S.S., Salfinger M., Schlaberg R., Török T.J., Wolk D.M., Yarita K., Ye X. Clinical Laboratory Biosafety Gaps: Lessons Learned from Past Outbreaks Reveal a Path to a Safer Future. Clin. Microbiol. Rev., 2021, vol. 34, no. 3: e0012618. doi: 10.1128/CMR.00126-18
- Cuervo A.M., Knecht E., Terlecky S.R., Dice J.F. Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. Am. J. Physiol., 1995, vol. 269, no. 5, Pt 1: C1200. doi: 10.1152/ajpcell.1995.269.5.c1200
- DiGiuseppe S., Bienkowska-Haba M., Sapp M. Human Papillomavirus Entry: Hiding in a Bubble. J. Virol., 2016, vol. 90, no. 18, pp. 8032–8035. doi: 10.1128/JVI.01065-16
- Dimitrov D.S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol., 2004, vol. 2, no. 2, pp. 109–122. doi: 10.1038/nrmicro817
- Dobbie I.M. Bridging the resolution gap: correlative super-resolution imaging. Nat. Rev. Microbiol., 2019, vol. 17, no. 6: 337. doi: 10.1038/s41579-019-0207-6
- Earl L.A., Falconieri V., Milne J.L., Subramaniam S. Cryo-EM: Beyond the microscope. Curr. Opin. Struct. Biol., 2017, vol. 46, pp. 71–78. doi: 10.1016/j.sbi.2017.06.002
- Ettinger A., Wittmann T. Fluorescence live cell imaging. Methods Cell Biol., 2014, vol. 123, pp. 77–94. doi: 10.1016/B978-0-12-420138-5.00005-7
- Fish K.N. Total internal reflection fluorescence (TIRF) microscopy. Curr. Protoc. Cytom., 2009, vol. 50, no. 1, pp. 12.18.1–12.18.13. doi: 10.1002/0471142956.cy1218s50
- Giacomelli G. Spatiotemporal localization of proteins in microorganisms via photoactivated localization microscopy. 2021, vol. 4, no. 6, pp. 2–13. doi: 10.5282/edoc.27360
- Haase A., Brahic M., Stowring L., Blum H. Detection of viral nucleic acids by in situ hybridization. In: Methods in Virology. Vol. 7. New York: Academic Press, 1984, pp. 189–226. doi: 10.1016/B9780124702073.500139
- Hell S.W., Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 1994, vol. 19, no. 11: 780. doi: 10.1364/OL.19.000780
- Hermann R., Walther P., Müller M. Immunogold labeling in scanning electron microscopy. Histochem. Cell Biol., 1996, vol. 106, no. 1, pp. 31–39. doi: 10.1007/BF02473200
- Hess S.T., Girirajan T.P.K., Mason M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J., 2006, vol. 91, no. 11, pp. 4258–4272. doi: 10.1529/biophysj.106.091116
- Hlawacek G., Veligura V., van Gastel R., Poelsema B. Helium ion microscopy. J. Vac. Sci. Technol. B, 2014, vol. 32, no. 2. doi: 10.1116/1.4863676
- Hoenen T., Groseth A. Virus–Host Cell Interactions. Cells, 2022, vol. 11, no. 5: 804. doi: 10.3390/cells11050804
- Jensen E., Crossman D.J. Technical review: Types of imaging — Direct STORM. Anat. Rec., 2014, vol. 297, no. 12, pp. 2227–2231. doi: 10.1002/ar.22960
- Johnson D.S., Jaiswal J.K., Simon S. Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events. Curr. Protoc. Cytom., 2012, vol. 61, no. 1, pp. 12.29.1–12.29.19. doi: 10.1002/0471142956.cy1229s61
- Junod S.L., Saredy J., Yang W. Nuclear import of adeno-associated viruses imaged by high-speed single-molecule microscopy. Viruses, 2021, vol. 13, no. 2: 167. doi: 10.3390/v13020167
- Laue M. Electron Microscopy of Viruses. Methods Cell Biol., 2010, vol. 96, pp. 1–20. doi: 10.1016/S0091-679X(10)96001-9
- Levsky J.M., Singer R.H. Fluorescence in situ hybridization: past, present and future. J. Cell Sci., 2003, vol. 116, no. 14, pp. 2833–2838. doi: 10.1242/jcs.00633
- Lichtman J.W., Conchello J.A. Fluorescence microscopy. Nat. Methods, 2005, vol. 2, no. 12, pp. 910–919. doi: 10.1038/nmeth817
- Lu M. Single-molecule FRET imaging of virus spike–host interactions. Viruses, 2021, vol. 13, no. 2: 332. doi: 10.3390/v13020332
- Lucic V., Leis A., Baumeister W. Cryo-electron tomography of cells: Connecting structure and function. Histochem. Cell Biol., 2008, vol. 130, no. 2, pp. 185–196. doi: 10.1007/s00418-008-0459-y
- McClelland R.D., Culp T.N., Marchant D.J. Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. Front. Cell. Infect. Microbiol., 2021, vol. 11: 749039. doi: 10.3389/fcimb.2021.749039
- Mohammed A., Abdullah A. Scanning electron microscopy (SEM): A review. Proceedings of 2018 International Conference on Hydraulics and Pneumatics — HERVEX. November 7–9, Băile Govora, Romania, pp. 77–85.
- Mukherjee S., Boutant E., Réal E., Mély Y., Anton H. Imaging viral infection by fluorescence microscopy: Focus on HIV-1 early stage. Viruses, 2021, vol. 13, no. 2: 213. doi: 10.3390/v13020213
- Murphy D.B. Digital light microscopy techniques for the study. In: Murphy D.B., editor. Fundamentals of Light Microscopy and Electronic Imaging. New York: Wiley-Liss, 1999, pp. 1–32
- Müller T., Schumann C., Kraegeloh A. STED Microscopy and its Ap plications: New Insights into Cellular Processes on the Nanoscale. ChemPhysChem, 2012, vol. 13, no. 8, pp. 1986–2000. doi: 10.1002/cphc.201100986
- Müller T.G., Sakin V., Müller B. A Spotlight on Viruses — Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules, 2019, vol. 24, no. 3: 481. doi: 10.3390/molecules24030481
- Nickerson A., Huang T., Lin L.J., Nan X. Photoactivated localization microscopy with bimolecular fluorescence complementation (BiFC-PALM). J. Vis. Exp., 2015, vol. 106: e53154. doi: 10.3791/53154
- Parveen N., Borrenberghs D., Rocha S., Hendrix J. Single viruses on the fluorescence microscope: Imaging molecular mobility, interactions and structure sheds new light on viral replication. Viruses, 2018, vol. 10, no. 5: 250. doi: 10.3390/v10050250
- Payne S. Virus Interactions With the Cell. Viruses, 2017, pp. 23–35. doi: 10.1016/B978-0-12-803109-4.00003-9
- Peddie C.J., Genoud C., Kreshuk A., Meechan K., Micheva K.D., Narayan K., Pape C., Parton R.G., Polishchuk R.S., Ronchi P., Schieber N.L., Schwab Y., Steyer A.M., Swedlow J.R., Verkade P., Briggs J.A.G. Volume electron microscopy. Nat. Rev. Methods Primers, 2022, vol. 2: 51. doi: 10.1038/s43586-022-00131-9
- Rajcani J. Molecular mechanisms of virus spread and virion components as tools of virulence: A review. Acta Microbiol. Immunol. Hung., 2003, vol. 50, no. 4, pp. 407–431. doi: 10.1556/AMicr.50.2003.4.8
- Razi M., Tooze S.A. Chapter 17 Correlative light and electron microscopy. Methods Enzymol., 2009, vol. 452, pp. 261–275. doi: 10.1016/S0076-6879(08)03617-3
- Richert-Pöggeler K.R., Franzke K., Hipp K., Kleespies R.G. Electron microscopy methods for virus diagnosis and high resolution analysis of viruses. Front. Microbiol., 2019, vol. 10: 421852. doi: 10.3389/fmicb.2018.03255
- Risco C. Application of Advanced Imaging to the Study of Virus-Host Interactions. Viruses, 2021, vol. 13, no. 10: 1958. doi: 10.3390/v13101958
- Robb N.C. Virus morphology: Insights from super-resolution fluorescence microscopy. Biochim. Biophys. Acta Mol. Basis Dis., 2022, vol. 1868, no. 4: 166347. doi: 10.1016/j.bbadis.2022.166347
- Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 2006, vol. 3, no. 10, pp. 793–795. doi: 10.1038/nmeth929
- Ryan J., Gerhold A.R., Boudreau V., Smith L., Maddox P.S. Introduction to modern methods in light microscopy. Methods Mol. Biol., 2017, vol. 1563, pp. 1–15. doi: 10.1007/978-1-4939-6810-7_1
- Saffarian S. Application of advanced light microscopy to the study of HIV and its interactions with the host. Viruses, 2021, vol. 13, no. 2: 223. doi: 10.3390/v13020223
- Saibil H., White N. Recent advances in biological imaging. Biosci. Rep., 1989, vol. 9, no. 4, pp. 437–449. doi: 10.1007/BF01117046
- Sakin V., Paci G., Lemke E.A., Müller B. Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett., 2016, vol. 590, no. 13, pp. 1896–1914. doi: 10.1002/1873-3468.12131
- Salpeter M.M., McHenry F.A. Electron microscope autoradiography. Adv. Tech. Biol. Electron Microsc., 1973, pp. 113–152. doi: 10.1002/1873-3468.12131
- Sanderson M.J., Smith I., Parker I., Bootman M.D. Fluorescence microscopy. Cold Spring Harb. Protoc., 2014, vol. 2014, no. 10: 071-795. doi: 10.1101/pdb.top071795
- Santarella-Mellwig R., Franke J., Jaedicke A., Gorjanacz M., Bauer U., Budd A., Mattaj I.W., Devos D.P. Correlative Light Electron Microscopy (CLEM) for Tracking and Imaging Viral Protein Associated Structures in Cryo-immobilized Cells. J. Vis. Exp., 2018, vol. 139: e58154. doi: 10.3791/58154
- Schmidt M., Byrne J.M., Maasilta I.J. Bio-imaging with the helium-ion microscope: A review. Beilstein J. Nanotechnol., 2021, vol. 12, pp. 1–23. doi: 10.3762/bjnano.12.1
- Schnell U., Dijk F., Sjollema K.A., Giepmans B.N.G. Immunolabeling artifacts and the need for live-cell imaging. Nat. Methods, 2012, vol. 9, no. 2, pp. 152–158. doi: 10.1038/nmeth.1855
- Shotton D.M. Video-enhanced light microscopy and its applications in cell biology. J. Cell Sci., 1988, vol. 89, no. Pt 2, pp. 129–150. doi: 10.1242/jcs.89.2.129
- Stewart P.L., Dermody T.S., Nemerow G.R. Structural basis of nonenveloped virus cell entry. Adv. Protein Chem., 2003, vol. 64, pp. 455–491. doi: 10.1016/S0065-3233(03)01013-1
- Sun E., He J., Zhuang X. Live cell imaging of viral entry. Curr. Opin. Virol., 2013, vol. 3, no. 1, pp. 34–43. doi: 10.1016/j.coviro.2013.01.005
- Sung M.H., McNally J.G. Live cell imaging and systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2011, vol. 3, no. 2, pp. 167–182. doi: 10.1002/wsbm.108
- Tam J., Merino D. Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods. J. Neurochem., 2015, vol. 135, no. 4, pp. 643–658. doi: 10.1111/jnc.13257
- Tang C.Y., Yang Z. Transmission electron microscopy (TEM). In: Membrane Characterization, 2017, pp. 145–159. doi: 10.1016/B978-0-444-63776-5.00008-5
- Timmermans F.J., Otto C. Contributed review: Review of integrated correlative light and electron microscopy. Rev. Sci. Instrum., 2015, vol. 86, no. 1. doi: 10.1063/1.4905434
- Trache A., Meininger G.A. Total internal reflection fluorescence (TIRF) microscopy. Curr. Protoc. Microbiol., 2008, vol. 10, no. 1, pp. 2A.2.1-2A.2.22. doi: 10.1002/9780471729259.mc02a02s10
- Turk M., Baumeister W. The promise and the challenges of cryo-electron tomography. FEBS Lett., 2020, vol. 594, no. 20, pp. 3243–3261. doi: 10.1002/1873-3468.13948
- Van den Dries K., Fransen J., Cambi A. Fluorescence CLEM in biology: historic developments and current super-resolution applications. FEBS Lett., 2022, vol. 596, no. 19, pp. 2486–2496. doi: 10.1002/1873-3468.14421
- Vicidomini G., Bianchini P., Diaspro A. STED super-resolved microscopy. Nat. Methods, 2018, vol. 15, no. 3, pp. 173–182. doi: 10.1038/nmeth.4593
- Wang I.H., Burckhardt C.J., Yakimovich A., Greber U.F. Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses, 2018, vol. 10, no. 4: 166. doi: 10.3390/v10040166
- Wirtz T., De Castro O., Audinot J.N., Philipp P. Imaging and analytics on the helium ion microscope. Annu. Rev. Anal. Chem., 2019, vol. 12, pp. 523–543. doi: 10.1146/annurev-anchem-061318-115457
- Witte R., Andriasyan V., Georgi F., Yakimovich A., Greber U.F. Concepts in Light Microscopy of Viruses. Viruses, 2018, vol. 10, no. 4: 202. doi: 10.3390/v10040202
- Wolff G., Bárcena M. Multiscale electron microscopy for the study of viral replication organelles. Viruses, 2021, vol. 13, no. 2: 197. doi: 10.3390/v13020197
- Xu C.S., Hayworth K.J., Lu Z., Grob P., Hassan A.M., García-Cerdán J.G., Niyogi K.K., Nogales E., Weinberg R.J., Hess H.F. Enhanced FIB-SEM systems for large-volume 3D imaging. Elife, 2017, vol. 6: e25916. doi: 10.7554/elife.25916
- Yi H., Strauss J.D., Ke Z., Alonas E., Dillard R.S., Hampton C.M., Lamb K.M., Hammonds J.E., Santangelo P.J., Spearman P.W., Wright E.R. Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications. J. Histochem. Cytochem., 2015, vol. 63, no. 10, pp. 780–792. doi: 10.1369/0022155415593323
- Zhong H. Photoactivated localization microscopy (PALM): An optical technique for achieving ~10-nm resolution. Cold Spring Harb. Protoc., 2010, vol. 2010, no. 12: pdb.top91. doi: 10.1101/pdb.top91
- Zhou W., Apkarian R., Wang Z.L., Joy D. Fundamentals of scanning electron microscopy (SEM). In: Scanning Microscopy for Nanotechnology: Techniques and Applications, 2006, pp. 1–40. doi: 10.1007/978-0-387-39620-0_1
Дополнительные файлы



