Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatic approach
- 作者: Alamdari-Palang V.1, Dehghan Z.1, Kian M.1, Zonar S.2, Fallahi J.1, Sisakht M.1, Khajeh S.1, Razban V.1
-
隶属关系:
- Shiraz University of Medical Sciences
- Islamic Azad University
- 期: 卷 15, 编号 2 (2025)
- 页面: 319-328
- 栏目: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/311319
- DOI: https://doi.org/10.15789/2220-7619-DAM-17622
- ID: 311319
如何引用文章
全文:
详细
Background. An outbreak of SARS-CoV-2 in 2019 has brought a great challenge to public health and rapid identification of immune epitopes for designing an effective vaccine for different variants of SARS-CoV-2 is necessary at the time of the pandemic. Rational, rapid, and precise vaccine design, especially vaccine antigen identification and optimization by in silico methods of bioinformatics, structural biology, and immunoinformatic is critical to efficient vaccine development against the SARS-CoV-2 virus. The aim of this study was to develop a particular novel and effective vaccines vaccine using bioinformatics approaches and resources that can target B- and T-cell epitopes to combat SARS-CoV-2 infection.
Materials and methods. The variants of SARS-CoV-2 (Alpha, Beta, Delta, and Omicron strains) spike protein were selected for designing the vaccine. The B-cell, T-cell, and IFNg-inducing epitopes were predicted. The beta-defensin-3 protein was selected as adjuvant and predicted epitopes were connected using suitable linkers. The vaccine’s allergenicity, antigenicity, physicochemical characteristics, 2D and 3D structure modeling, and molecular docking were evaluated for the final construct.
Results. The in silico results showed that the multi-epitope vaccine has a stable structure and can induce humoral and cellular immune responses against SARS-CoV-2.
Conclusion. B-cell and T-cell epitopes on spike protein were identified and recommended for design and confirmation of in vivo evaluation for multi-epitope peptides as vaccines against SARS-CoV-2.
作者简介
V. Alamdari-Palang
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
MSc, PhD Candidate, Department of Molecular Medicine
伊朗伊斯兰共和国, ShirazZ. Dehghan
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
PhD, Researcher, Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies
伊朗伊斯兰共和国, ShirazM. Kian
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
DVM, PhD Candidate, Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies
伊朗伊斯兰共和国, ShirazS. Zonar
Islamic Azad University
Email: razban_vahid@yahoo.com
MSc, Researcher, Department of Biology, Sciences and Research Branch
伊朗伊斯兰共和国, TehranJ. Fallahi
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
PhD, Assistant Professor, Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies
伊朗伊斯兰共和国, ShirazM. Sisakht
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
PhD, Researcher, Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies
伊朗伊斯兰共和国, ShirazS. Khajeh
Shiraz University of Medical Sciences
Email: razban_vahid@yahoo.com
PhD, Assistant Professor, Bone and Joint Diseases Research Center
伊朗伊斯兰共和国, ShirazV. Razban
Shiraz University of Medical Sciences
编辑信件的主要联系方式.
Email: razban_vahid@yahoo.com
PhD, Associate Professor, Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies
伊朗伊斯兰共和国, Shiraz参考
- Acter T., Uddin N., Das J., Akhter A., Choudhury T.R., Kim S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: a global health emergency. Sci. Total Environ., 2020, no. 730: 138996. doi: 10.1016/j.scitotenv.2020.138996
- Ahmed S.F., Quadeer A.A., McKay M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 2020, vol. 12, no. 3: 254. doi: 10.3390/v12030254
- Al-Rohaimi A.H., Al Otaibi F. Novel SARS-CoV-2 outbreak and COVID19 disease; a systemic review on the global pandemic. Genes Dis., 2020, vol. 7, no. 4, pp. 491–501. doi: 10.1016/j.gendis.2020.06.004
- Amanat F., Krammer F. SARS-CoV-2 vaccines: status report. Immunity, 2020, vol. 52, no. 4, pp. 583–589. doi: 10.1016/j.immuni.2020.03.007
- Anderegg M.A., Liu M., Saganas C., Montani M., Vogt B., Huynh-Do U., Fuster D.G. De novo vasculitis after mRNA-1273 (Moderna) vaccination. Kidney Int., 2021, vol. 100, no. 2, pp. 474–476. doi: 10.1016/j.kint.2021.05.016
- Arai R., Ueda H., Kitayama A., Kamiya N., Nagamune T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng., 2001, vol. 14, no. 8, pp. 529–532. doi: 10.1093/protein/14.8.529
- Ashfaq U.A., Saleem S., Masoud M.S., Ahmad M., Nahid N., Bhatti R., Almatroudi A., Khurshid M. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: reverse vaccinology and molecular docking approach. PLoS One, 2021, vol. 16, no. 2: e0245072. doi: 10.1371/journal.pone.0245072
- Ather A., Patel B., Ruparel N.B., Diogenes A., Hargreaves K.M. Coronavirus disease 19 (COVID-19): implications for clinical dental care. J. Endod., 2020, vol. 46, no. 5, pp. 584–595. doi: 10.1016/j.joen.2020.03.008
- Bahrami M., Kamalinejad M., Latifi S.A., Seif F., Dadmehr M. Cytokine storm in COVID-19 and parthenolide: preclinical evidence. Phytother Res., 2020, vol. 34, no. 10, pp. 2429–2430. doi: 10.1002/ptr.6776
- Bansal S., Perincheri S., Fleming T., Poulson C., Tiffany B., Bremner R.M., Mohanakumar T. Cutting edge: circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer-BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines. J. Immunol., 2021, vol. 207, no. 10, pp. 2405–2410. doi: 10.4049/jimmunol.2100637
- Cascella M., Mauro I., De Blasio E., Crispo A., Del Gaudio A., Bimonte S., Cuomo A., Ascierto P.A. Rapid and impressive response to a combined treatment with single-dose tocilizumab and NIV in a patient with COVID-19 pneumonia/ARDS. Medicina (Kaunas), 2020, vol. 56, no. 8: 377. doi: 10.3390/medicina56080377
- Chaudhri G., Quah B.J., Wang Y., Tan A.H., Zhou J., Karupiah G., Parish C.R. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proc. Natl Acad. Sci. USA, 2009, vol. 106, no. 35, pp. 14984–14989. doi: 10.1073/pnas.0906554106
- Chen W.H., Strych U., Hotez P.J., Bottazzi M.E. The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep., 2020, vol. 7, no. 2, pp. 61–64. doi: 10.1007/s40475-020-00201-6
- Dariushnejad H., Ghorbanzadeh V., Akbari S., Hashemzadeh P. Designing a multi-epitope peptide vaccine against COVID-19 variants utilizing in-silico tools. Iranian Journal of Medical Microbiology, 2021, vol. 15, no. 5, pp. 592–605. doi: 10.30699/ijmm.15.5.592
- Desta I.T., Porter K.A., Xia B., Kozakov D., Vajda S. Performance and its limits in rigid body protein-protein docking. Structure, 2020, vol. 28, no. 9, pp. 1071–1081 e3. doi: 10.1016/j.str.2020.06.006
- Dhanda S.K., Vir P., Raghava G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct., 2013, vol. 8, no. 1: 30. doi: 10.1186/1745-6150-8-30
- Farnudian-Habibi A., Mirjani M., Montazer V., Aliebrahimi S., Katouzian I., Abdolhosseini S., Rahmani A., Keyvani H., Ostad S.N., Rad-Malekshahi M. Review on approved and inprogress COVID-19 vaccines. Iran. J. Pharm. Res., 2022, vol. 21, no. 1: e124228. doi: 10.5812/ijpr.124228
- Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook, 2005, pp. 571–607. doi: 10.1385/1-59259-890-0:571
- Ghaebi M., Osali A., Valizadeh H., Roshangar L., Ahmadi M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: challenges and chances. J. Cell. Physiol., 2020, vol. 235, no. 12, pp. 9098–9109. doi: 10.1002/jcp.29771
- Guo G., Ye L., Pan K., Chen Y., Xing D., Yan K., Chen Z., Ding N., Li W., Huang H., Zhang L., Li X., Xue X. New insights of emerging SARS-CoV-2: epidemiology, etiology, clinical features, clinical treatment, and prevention. Front. Cell. Dev. Biol., 2020, no. 8: 410. doi: 10.3389/fcell.2020.00410
- Ishack S., Lipner S.R. Bioinformatics and immunoinformatics to support COVID-19 vaccine development. J. Med. Virol., 2021, vol. 93, no. 9, pp. 5209–5211. doi: 10.1002/jmv.27017
- Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet, 2021, vol. 397, no. 10275, pp. 642–643. doi: 10.1016/S0140-6736(21)00191-4
- Kang S., Peng W., Zhu Y., Lu S., Zhou M., Lin W., Wu W., Huang S., Jiang L., Luo X., Deng M. Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. Int. J. Antimicrob. Agents, 2020, vol. 55, no. 5: 105950. doi: 10.1016/j.ijantimicag.2020.105950
- Kardani K., Bolhassani A., Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert. Rev. Vaccines, 2020, vol. 19, no. 8, pp. 699–726. doi: 10.1080/14760584.2020.1794832
- Karwaciak I., Salkowska A., Karas K., Dastych J., Ratajewski M. Nucleocapsid and spike proteins of the coronavirus SARS-CoV-2 induce IL6 in monocytes and macrophages-potential implications for cytokine storm syndrome. Vaccines (Basel), 2021, vol. 9, no. 1: 54. doi: 10.3390/vaccines9010054
- Knight T.E. Severe Acute Respiratory Syndrome Coronavirus 2 and Coronavirus Disease 2019: a clinical overview and primer. Biopreserv Biobank, 2020, vol. 18, no. 6, pp. 492–502. doi: 10.1089/bio.2020.0066
- Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein-protein docking. Nat. Protoc., 2017, vol. 12, no. 2, pp. 255–278. doi: 10.1038/nprot.2016.169
- Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr., 1993, vol. 26, no. 2, pp. 283–291. doi: 10.1107/s0021889892009944
- Lavigne R., Seto D., Mahadevan P., Ackermann H.W., Kropinski A.M. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res. Microbiol., 2008, vol. 159, no. 5, pp. 406–414. doi: 10.1016/j.resmic.2008.03.005
- Lee S., Nguyen M.T. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw., 2015, vol. 15, no. 2, pp. 51–57. doi: 10.4110/in.2015.15.2.51
- Magnan C.N., Zeller M., Kayala M.A., Vigil A., Randall A., Felgner P.L., Baldi P. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 2010, vol. 26, no. 23, pp. 2936–2943. doi: 10.1093/bioinformatics/btq551
- Malik J.A., Ahmed S., Mir A., Shinde M., Bender O., Alshammari F., Ansari M., Anwar S. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. J. Infect. Public Health, 2022, vol. 15, no. 2, pp. 228–240. doi: 10.1016/j.jiph.2021.12.014
- María R.A.R., Arturo C.V.J., Alicia J.A., Paulina M.L.G., Gerardo A.O. The impact of bioinformatics on vaccine design and development. Vaccines, no. 22017, pp. 3–6.
- Martin J.E., Louder M.K., Holman L.A., Gordon I.J., Enama M.E., Larkin B.D., Andrews C.A., Vogel L., Koup R.A., Roederer M., Bailer R.T., Gomez P.L., Nason M., Mascola J.R., Nabel G.J., Graham B.S., Team V.R.C.S. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine, 2008, vol. 26, no. 50, pp. 6338–6343. doi: 10.1016/j.vaccine.2008.09.026
- McGuffin L.J., Bryson K., Jones D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, vol. 16, no. 4, pp. 404–405. doi: 10.1093/bioinformatics/16.4.404
- Pandey S.C., Pande V., Sati D., Upreti S., Samant M. Vaccination strategies to combat novel corona virus SARS-CoV-2. Life Sci., 2020, no. 256: 117956. doi: 10.1016/j.lfs.2020.117956
- Ponomarenko J., Bui H.H., Li W., Fusseder N., Bourne P.E., Sette A., Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, vol. 9, no. 1: 514. doi: 10.1186/1471-2105-9-514
- Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, vol. 5, no. 4, pp. 725–738. doi: 10.1038/nprot.2010.5
- Saadi M., Karkhah A., Nouri H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol., 2017, vol. 51, pp. 227–234. doi: 10.1016/j.meegid.2017.04.009
- Sadat S.M., Aghadadeghi M.R., Yousefi M., Khodaei A., Sadat Larijani M., Bahramali G. Bioinformatics analysis of SARS-CoV-2 to approach an effective vaccine candidate against COVID-19. Mol. Biotechnol., 2021, vol. 63, no. 5, pp. 389–409. doi: 10.1007/s12033-021-00303-0
- Saha S., Raghava G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, vol. 65, no. 1, pp. 40–48. doi: 10.1002/prot.21078
- Saif L.J. Vaccines for COVID-19: perspectives, prospects, and challenges based on candidate SARS, MERS, and animal coronavirus vaccines. Eur. Med. J., 2020. doi: 10.33590/emj/200324
- Sarkar B., Ullah M.A., Araf Y., Rahman M.S. Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Inform. Med. Unlocked, 2020, no. 21: 100478. doi: 10.1016/j.imu.2020.100478
- Satarker S., Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res., 2020, vol. 51, no. 6, pp. 482–491. doi: 10.1016/j.arcmed.2020.05.012
- Shehata M.M., Mahmoud S.H., Tarek M., Al-Karmalawy A.A., Mahmoud A., Mostafa A., M. Elhefnawi M., Ali M.A. In silico and in vivo evaluation of SARS-CoV-2 predicted epitopes-based candidate vaccine. Molecules, 2021, vol. 26, no. 20: 6182. doi: 10.3390/molecules26206182
- Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, vol. 24, pp. 91–98. doi: 10.1016/j.jare.2020.03.005
- Sisakht M., Bemani P., Ghadim M.B. A., Rahimi A., Sakhteman A. PyProtModel: An easy to use GUI for comparative protein modeling. J. Mol. Graph. Model., 2022, no. 112: 108134. doi: 10.1016/j.jmgm.2022.108134
- Soria-Guerra R.E., Nieto-Gomez R., Govea-Alonso D.O., Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform., 2015, vol. 53, pp. 405–414. doi: 10.1016/j.jbi.2014.11.003
- Srivastava S., Verma S., Kamthania M., Kaur R., Badyal R.K., Saxena A.K., Shin H.J., Kolbe M., Pandey K.C. Structural basis for designing multiepitope vaccines against COVID-19 infection: in silico vaccine design and validation. JMIR Bioinform. Biotechnol., 2020, vol. 1, no. 1: e19371. doi: 10.2196/19371
- Tahir Ul Qamar M., Alqahtani S.M., Alamri M.A., Chen L.L. Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, vol. 10, no. 4, pp. 313–319. doi: 10.1016/j.jpha.2020.03.009
- Tourani M., Samavarchi Tehrani S., Movahedpour A., Rezaei Arablouydareh S., Maleksabet A., Savardashtaki A., Ghasemnejad Berenji H., Taheri-Anganeh M. Design and evaluation of a multi-epitope vaccine for COVID-19: an in silico approach. Health. Science Monitor, 2023, vol. 2, no. 3, pp. 180–204. doi: 10.61186/hsm.2.3.180
- Vellingiri B., Jayaramayya K., Iyer M., Narayanasamy A., Govindasamy V., Giridharan B., Ganesan S., Venugopal A., Venkatesan D., Ganesan H., Rajagopalan K., Rahman P., Cho S.G., Kumar N.S., Subramaniam M.D. COVID-19: a promising cure for the global panic. Sci. Total. Environ., 2020, no. 725: 138277. doi: 10.1016/j.scitotenv.2020.138277
- WHO. COVID-19 weekly epidemiological update, edition 134, 16 March 2023. 2023.
- Yarian F., Dehghan Z., Lari A., Ahangarzadeh S., Sharifnia Z., Shahzamani K., Shahidi S. Development of polyepitopic immunogenic contrast against hepatitis C virus 1a-6a genotype by in silico approach. Biomedical and Biotechnology Research Journal (BBRJ), 2020, vol. 4, no. 4, pp. 355–364. doi: 10.4103/bbrj.bbrj_186_20
- Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7
补充文件
