МОЛЕКУЛЯРНЫЕ ОСНОВЫ УСТОЙЧИВОСТИ ПАТОГЕННЫХ ДЛЯ ЧЕЛОВЕКА МИКОПЛАЗМ К ФТОРХИНОЛОНАМ

Обложка

Цитировать

Полный текст

Аннотация

Патогенные для человека микоплазмы из-за отсутствия клеточной стенки устойчивы к ряду антибиотиков. Для лечения микоплазмозов чаще всего используют макролиды, однако распространение устойчивых к ним форм требует применения альтернативных схем лечения, в частности, назначения фторхинолонов и тетрациклинов. Из существующих противомикробных соединений только фторхинолоны обладают бактерицидным эффектом в отношении микоплазм, поэтому их применение предпочтительно при лечении пациентов в состоянии иммуносупрессии. Ограничением применения фторхинолонов может стать устойчивость возбудителя к соединениям данной группы. Наиболее частой причиной развития устойчивости к фторхинолонам как у микоплазм, так и у других бактерий являются мутации, ведущие к аминокислотным заменам в составе мишеней фторхинолонов: гиразы и топоизомеразы IV. Отмечено, что для микоплазм, относящихся к различным видам, характерны разные паттерны замен в субъединицах гиразы и топоизомеразы IV. Причиной могут быть различия в структуре этих белков, отражающиеся в видовых особенностях природной восприимчивости к фторхинолонам у микоплазм. Ряд исследований указывает на существование дополнительных механизмов резистентности, к которым, в первую очередь, относятся системы множественной резистентности. Подобные системы, относящиеся к группе ABC-транспортеров, были найдены и у микоплазм. Они описаны у Mycoplasma hominis и M. pneumoniae, причем у M. hominis наблюдалась их способность к выведению из клеток фторхинолонов, а у M. pneumoniae отмечена способность систем множественной резистенции экспортировать макролиды. Гены, кодирующие компоненты систем множественной резистентности, были найдены и в геномах других видов, в том числе M. genitalium и микоплазм, вызывающих заболевания животных. Также у непатогенных для человека микоплазм вида Acholeplasma laidlawii была обнаружена ассоциированная с устойчивостью к фторхинолонам способность к экспорту белков и генетического материала. Понимание роли мутаций, активности транспортеров и их кумулятивного эффекта в развитии устойчивости к фторхинолонам особенно важно в контексте определения устойчивости к фторхинолонам у плохо поддающихся культивированию патогенов M. genitalium и M. pneumoniae. Молекулярно-биологические методы определения устойчивости к противомикробным соединениям в настоящее время входят в клиническую практику, однако недостаток сведений о молекулярных основах устойчивости микоплазм делает результат недостаточно информативным для патогенов данной группы. В обзоре рассмотрены особенности развития устойчивости к фторхинолонам у патогенных для человека микоплазм разных видов и их проявления на молекулярном уровне.

Об авторах

А. Н. Ваганова

ФБУН НИИ эпидемиологии и микробиологии имени Пастера

Автор, ответственный за переписку.
Email: van.inprogress@gmail.com

Ваганова Анастасия Николаевна - младший научный сотрудник лаборатории молекулярно-биологических технологий отдела новых технологий.

197101, Санкт-Петербург, ул. Мира, 14. Тел.: 8 (812) 232-01-08 (служебн.)

Россия

Список литературы

  1. Чарушин В.Н., Носова Э.В., Липунова Г.Н., Чупахин О.Н. Фторхинолоны: синтез и применение. М.: Физматиздат, 2014. 318 с. [Charushin V.N., Nosova E.V., Lipunova G.N., Chupahin O.N. Ftorkhinolony: sintez i primenenie [Fluoroquinolones: synthesis and application]. Moscow: Pharmizdat, 2014, 318 p.
  2. Aathithan S., French G.L. Prevalence and role of eff lux pump activity in ciprof loxacin resistance in clinical isolates of Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis., 2011, vol. 30, no. 6, pp. 745–752. doi: 10.1007/s10096-010-1147-0
  3. Almahmoud I., Kay E., Schneider D., Maurin M. Mutational paths towards increased f luoroquinolone resistance in Legionella pneumophila. J. Antimicrob. Chemother., 2009, vol. 64, no. 2, pp. 284–293. doi: 10.1093/jac/dkp173
  4. Barry A.L., Jones R.N., Thornsberry C., Ayers L.W., Gerlach E.H., Sommers H.M. Antibacterial activities of ciprof loxacin, norf loxacin, oxolinic acid, cinoxacin, and nalidixic acid. Antimicrob. Agents Chemother., 1984, vol. 25, no. 5., pp. 633–637.
  5. Bebear C.M., Bové J.M., Bebear C., Renaudin J. Characterization of Mycoplasma hominis mutations involved in resistance to f luoroquinolones. Antimicrob. Agents Chemother., 1997, vol. 41, no. 2, pp. 269–273.
  6. Bébéar C.M., Charron A., Bové J.M., Bébéar C., Renaudin J. Cloning and nucleotide sequences of the topoisomerase IV parC and parE genes of Mycoplasma hominis. Antimicrob. Agents Chemother., 1998, vol. 42, no. 8, pp. 2024–2031.
  7. Bébéar C., Pereyre S., Peuchant O. Mycoplasma pneumoniae: susceptibility and resistance to antibiotics. Future Microbiol., 2011, vol. 6, no. 4, pp. 423–431. doi: 10.2217/fmb.11.18
  8. Bébéar C.M., Renaudin H., Charron A., Bové J.M., Bébéar C., Renaudin J. Alterations in topoisomerase IV and DNA gyrase in quinolone-resistant mutants of Mycoplasma hominis obtained in vitro. Antimicrob. Agents Chemother., 1998, vol. 42, no. 9, pp. 2304–2311.
  9. Bébéar C.M., Renaudin H., Charron A., Clerc M., Pereyre S., Bébéar C. DNA gyrase and topoisomerase IV mutations in clinical isolates of Ureaplasma spp. and Mycoplasma hominis resistant to f luoroquinolones. Antimicrob. Agents Chemother., 2003, vol. 47, no. 10, pp. 3323–3325. doi: 10.1128/AAC.47.10.3323-3325.2003
  10. Blanchard A., Bébéar C. The evolution of Mycoplasma genitalium. Ann. NY Acad. Sci., 2011, Iss.: The evolution of infectious agents in relation to sex, pp. 61–64. doi: 10.1111/j.1749-6632.2011.06418.x
  11. Boncoeur E., Durmort C., Bernay B., Ebel C., Di Guilmi A.M., Croizé J., Vernet T., Jault J.M. PatA and PatB form a functional heterodimeric ABC multidrug eff lux transporter responsible for the resistance of Streptococcus pneumoniae to f luoroquinolones. Biochemistry, 2012, vol. 51, no. 39, pp. 7755–7765. doi: 10.1021/bi300762p
  12. Chen P.E., Willner K.M., Butani A., Dorsey S., George M., Stewart A., Lentz S.M., Cook C.E., Akmal A., Price L.B., Keim P.S., Mateczun A., Brahmbhatt T.N., Bishop-Lilly K.A., Zwick M.E., Read T.D., Sozhamannan S. Rapid identification of genetic modifications in Bacillus anthracis using whole genome draft sequences generated by 454 pyrosequencing. PLoS One, 2010, vol. 5, no. 8:12397. doi: 10.1371/journal.pone.0012397
  13. Cirz R.T., O’Neill B.M., Hammond J.A., Head S.R., Romesberg F.E. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprof loxacin. J. Bacteriol., 2006, vol. 188, no. 20, pp. 7101–7110. doi: 10.1128/JB.00807-06
  14. Couldwell D.L., Tagg K.A., Jeoffreys N.J., Gilbert G.L. Failure of moxifloxacin treatment in Mycoplasma genitalium infections due to macrolide and fluoroquinolone resistance. Int. J. STD AIDS, 2013, vol. 24, no. 10, pp. 822–828. doi: 10.1177/0956462413502008
  15. De Lastours V., Cambau E., Guillard T., Marcade G., Chau F., Fantin B. Diversity of individual dynamic patterns of emergence of resistance to quinolones in Escherichia coli from the fecal f lora of healthy volunteers exposed to ciprof loxacin. J. Infect. Dis., 2012. vol. 206, no. 9, pp. 1399–1406. doi: 10.1093/infdis/jis511
  16. De Lastours V., Fantin B. Impact of f luoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance. Future Microbiol., 2015, vol. 10, no. 7, pp. 1241–1255. doi: 10.2217/fmb.15.40
  17. Deguchi T., Kikuchi M., Yasuda M., Ito S. Sitaf loxacin: antimicrobial activity against ciprof loxacin-selected laboratory mutants of Mycoplasma genitalium and inhibitory activity against its DNA gyrase and topoisomerase IV. J. Infect. Chemother., 2015, vol. 21, no. 1, pp. 74–75. doi: 10.1016/j.jiac.2014.08.021
  18. Deguchi T., Yasuda M., Horie K., Seike K., Kikuchi M., Mizutani K., Tsuchiya T., Yokoi S., Nakano M., Hoshina S. Drug resistance-associated mutations in Mycoplasma genitalium in female sex workers, Japan. Emerg. Infect. Dis., 2015, vol. 21, no. 6, pp. 1062–1064. doi: 10.3201/eid2106.142013
  19. Daikos G.L., Lolans V.T., Jackson G.G. Alterations in outer membrane proteins of Pseudomonas aeruginosa associated with selective resistance to quinolones. Antimicrob. Agents Chemother., 1988, vol. 32, no. 5, pp. 785–787.
  20. Dietz S., Lassek C., Mack S.L., Ritzmann M., Stadler J., Becher D., Hoelzle K., Riedel K., Hoelzle L.E. Updating the proteome of the uncultivable hemotrophic Mycoplasma suis in experimentally infected pigs. Proteomics, 2016, vol. 16, no. 4, pp. 609–613. doi: 10.1002/pmic.201500238
  21. Dörr T., Lewis K., Vulić M. SOS response induces persistence to f luoroquinolones in Escherichia coli. PLoS Genet., 2009, vol. 5, no. 12, e. 1000760. doi: 10.1371/journal.pgen.1000760
  22. Duffy L., Glass J., Hall G., Avery R., Rackley R., Peterson S., Waites K. Fluoroquinolone resistance in Ureaplasma parvum in the United States. J. Clin. Microbiol., 2006, vol. 44, no. 4, pp. 1590 –1591. doi: 10.1128/JCM.44.4.1590-1591.2006
  23. Dybvig K., Voelker L.L. Molecular biology of mycoplasmas. Annu. Rev. Microbiol., 1996, vol. 50, pp. 25–57. doi: 10.1146/annurev.micro.50.1.25
  24. El Garch F., Lismond A., Piddock L.J., Courvalin P., Tulkens P.M., Van Bambeke F. Fluoroquinolones induce the expression of patA and patB, which encode ABC eff lux pumps in Streptococcus pneumoniae. J. Antimicrob Chemother., 2010, vol. 65, no. 10, pp. 2076–2082. doi: 10.1093/jac/dkq287
  25. Escudero J.A., San Millan A., Gutierrez B., Hidalgo L., La Ragione R.M., AbuOun M., Galimand M., Ferrándiz M.J., Domínguez L., De la Campa A.G., Gonzalez-Zorn B. Fluoroquinolone eff lux in Streptococcus suis is mediated by SatAB and not by SmrA. Antimicrob. Agents Chemother., 2011, vol. 55, no. 12, pp. 5850 –5860. doi: 10.1128/AAC.00498-11
  26. Feio M.J., Sousa I., Ferreira M., Cunha-Silva L., Saraiva R.G., Queirós C., Alexandre J.G., Claro V., Mendes A., Ortiz R., Lopes S., Amaral A.L., Lino J., Fernandes P., Silva A.J., Moutinho L., De Castro B., Pereira E., Perelló L., Gameiro P. Fluoroquinolonemetal complexes: a route to counteract bacterial resistance? J. Inorg. Biochem., 2014, no. 138, pp.129–143. doi: 10.1016/j.jinorgbio.2014.05.007
  27. Fukuda H., Hosaka M., Hirai K., Iyobe S. New norf loxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob. Agents Chemother., 1990, vol. 34, no. 9, pp. 1757–1761.
  28. Gohara Y., Arai S., Akashi A., Kuwano K., Tseng C.C., Matsubara S., Matumoto M., Furudera T. In vitro and in vivo activities of Q-35, a new f luoroquinolone, against Mycoplasma pneumoniae. Antimicrob. Agents Chemother., 1993., vol. 37, no. 9, pp. 1826 –1830.
  29. Gruson D., Pereyre S., Renaudin H., Charron A., Bébéar C., Bébéar C.M. In vitro development of resistance to six and four f luoroquinolones in Mycoplasma pneumoniae and Mycoplasma hominis, respectively. Antimicrob. Agents Chemother., 2005, vol. 49, no. 3, pp. 1190 –1193. doi: 10.1128/AAC.49.3.1190-1193.2005
  30. Hirose K., Kawasaki Y., Kotani K., Abiko K., Sato H. Characterization of a point mutation in the parC gene of Mycoplasma bovirhinis associated with f luoroquinolone resistance. J. Vet. Med. B. Infect. Dis. Vet. Public Health, 2004, vol. 51, no. 4, pp. 169–175. doi: 10.1111/j.1439-0450.2004.00748.x
  31. Hooper D.C. Mechanisms of f luoroquinolone resistance. Drug Resist. Updat., 1999, vol. 2, no. 1, pp. 238–255. doi: 10.1054/drup.1998.0068
  32. Hooper D.C., Wolfson J.S., Souza K.S., Ng E.Y., McHugh G.L., Swartz M.N. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norf loxacin accumulation. Antimicrob. Agents Chemother., 1989, vol. 33, no. 3, pp. 283–290.
  33. Huguet A., Pensec J., Soumet C. Resistance in Escherichia coli: variable contribution of eff lux pumps with respect to different fluoroquinolones. J. Appl. Microbiol., 2013, vol. 114, no. 5, pp. 1294–1299. doi: 10.1111/jam.12156
  34. Jacoby G.A. Mechanisms of resistance to quinolones. Clin. Infec. Dis., 2005, vol. 41, pp. 120 –126. doi: 10.1086/428052
  35. Jensen J.S., Cusini M., Gomberg M., Moi H. 2016 European guideline on Mycoplasma genitalium infections. J. Eur. Acad. Dermatol. Venereol., 2016, vol. 30, no. 10, pp. 1650 –1656. doi: 10.1111/jdv.13849
  36. Jiang X., Zhou L., Gao D., Wang Y., Wang D., Zhang Z., Chen M., Su Y., Li L., Yan H., Shi L. Expression of eff lux pump gene lde in ciprof loxacin-resistant foodborne isolates of Listeria monocytogenes. Microbiol. Immunol., 2012, vol. 56, no. 12, pp. 843–846. doi: 10.1111/j.1348-0421.2012.00506.x
  37. Kawai Y., Miyashita N., Kubo M., Akaike H., Kato A., Nishizawa Y., Saito A., Kondo E., Teranishi H., Ogita S., Tanaka T., Kawasaki K., Nakano T., Terada K., Ouchi K. Therapeutic efficacy of macrolides, minocycline, and tosuf loxacin against macrolide-resistant Mycoplasma pneumoniae pneumonia in pediatric patients. Antimicrob. Agents Chemother., 2013, vol. 57, no. 5, pp. 2252–2258. doi: 10.1128/AAC.00048-13
  38. Kenny G.E., Hooton T.M., Roberts M.C., Cartwright F.D., Hoyt J. Susceptibilities of genital mycoplasmas to the newer quinolones as determined by the agar dilution method. Antimicrob. Agents Chemother., 1989, vol. 33, no. 1, pp.103–107.
  39. Kenny G.E., Young P.A., Cartwright F.D., Sjöström K.E., Huang W.M. Sparf loxacin selects gyrase mutations in first-step Mycoplasma hominis mutants, whereas of loxacin selects topoisomerase IV mutations. Antimicrob. Agents Chemother., 1999, vol. 43, no. 10, pp. 2493–2496.
  40. King D.E., Malone R., Lilley S.H. New classification and update on the quinolone antibiotics. Am. Fam. Physician, 2000, vol. 61, no.9, pp. 2741–2748.
  41. Krausse R., Schubert S. In vitro activities of tetracyclines, macrolides, f luoroquinolones and clindamycin against Mycoplasma hominis and Ureaplasma ssp. isolated in Germany over 20 years. Clin. Microbiol. Infect., 2010, vol. 16, no. 11, pp. 1649–1655. doi: 10.1111/j.1469-0691.2009.03155.x
  42. Krieg N.R., Staley J.T., Brown D.R., Hedlund B.P., Paster B.J., Ward N.L., Ludwig W., Whitman W.B. (eds.) Bergey’s Manual of Systematic Bacteriology. Vol. 4. 2nd Edition. NY: Springer-Verlag, 2011, 949 p.
  43. Kunz A.N., Begum A.A., Wu H., D’Ambrozio J.A., Robinson J.M., Shafer W.M., Bash M.C., Jerse A.E. Impact of f luoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis., 2012, vol. 205, no. 12, pp. 1821–1829. doi: 10.1093/infdis/jis277
  44. Kwak Y.G, Truong-Bolduc Q.C., Bin Kim H., Song K.H., Kim E.S., Hooper D.C. Association of norB overexpression and f luoroquinolone resistance in clinical isolates of Staphylococcus aureus from Korea. J. Antimicrob. Chemother., 2013, vol. 68, no. 12, pp. 2766–2772. doi: 10.1093/jac/dkt286
  45. Laponogov I., Sohi M.K., Veselkov D.A., Pan X.S., Sawhney R., Thompson A.W., McAuley K.E, Fisher L.M., Sanderson M.R. Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat. Struct. Mol. Biol., 2009, vol. 16, no. 6, pp. 667–669. doi: 10.1038/nsmb.1604
  46. Le Roy C., Hénin N., Pereyre S., Bébéar C. Fluoroquinolone-resistant Mycoplasma genitalium, Southwestern France. Emerg. Infect. Dis., vol. 22, no. 9, pp. 1677–1679. doi: 10.3201/eid2209.160446
  47. Legakis N.J., Tzouvelekis L.S., Makris A., Kotsifaki H. Outer membrane alterations in multiresistant mutants of Pseudomonas aeruginosa selected by ciprof loxacin. Antimicrob. Agents Chemother., 1989, vol. 33, no. 1, pp. 124–127.
  48. Li S., Sun H., Liu F., Zhao H., Zhu B., Lv N. Complete genome sequence of the macrolide-resistant Mycoplasma pneumoniae strain C267 in China. Genome Announc., 2016, vol. 4, no. 2: e00236-16. doi: 10.1128/genomeA.00236-16
  49. Li X.Z. Quinolone resistance in bacteria: emphasis on plasmid-mediated mechanisms. Int. J. Antimicrob. Agents, 2005, vol. 25, no. 6, pp. 453–463. doi: 10.1016/j.ijantimicag.2005.04.002
  50. Liu X., Boothe D.M., Thungrat K., Aly S. Mechanisms accounting for f luoroquinolone multidrug resistance Escherichia coli isolated from companion animals. Vet. Microbiol., 2012, vol. 161, no. 1–2, pp. 159–168. doi: 10.1016/j.vetmic.2012.07.019
  51. Lupala C.S., Gomez-Gutierrez P., Perez J.J. Molecular determinants of the bacterial resistance to f luoroquinolones: a computational study. Curr. Comput. Aided. Drug Des., 2013, vol. 9, no. 2, pp. 281–288. doi: 10.2174/15734099113099990004
  52. Madurga S., Sánchez-Céspedes J., Belda I., Vila J., Giralt E. Mechanism of binding of f luoroquinolones to the quinolone resistance-determining region of DNA gyrase: towards an understanding of the molecular basis of quinolone resistance. Chembiochem., 2008, vol. 9, no. 13, pp. 2081-2086. doi: 10.1002/cbic.200800041
  53. Manhart L.E., Broad J.M., Golden M.R. Mycoplasma genitalium: should we treat and how? Clin. Infect. Dis., 2011, no.53, pp. 129–142. doi: 10.1093/cid/cir702
  54. Marcusson L.L., Frimodt-Møller N., Hughes D. Interplay in the selection of f luoroquinolone resistance and bacterial fitness. PLoS Pathog., 2009, vol. 5, no. 8:1000541. doi: 10.1371/journal.ppat.1000541
  55. Medvedeva E.S., Baranova N.B., Mouzykantov A.A., Grigorieva T.Y., Davydova M.N., Trushin M.V., Chernova O.A., Chernov V.M. Adaptation of mycoplasmas to antimicrobial agents: Acholeplasma laidlawii extracellular vesicles mediate the export of ciprof loxacin and a mutant gene related to the antibiotic target. Scientific World J., 2014, vol. 2014:150615. doi: 10.1155/2014/150615
  56. Medvedeva E.S., Davydova M.N., Mouzykantov A.A., Baranova N.B., Grigoreva T.Y., Siniagina M.N., Boulygina E.A., Chernova O.A., Chernov V.M. Genomic and proteomic profiles of Acholeplasma laidlawii strains differing in sensitivity to ciprofloxacin. Dokl. Biochem. Biophys., 2016, vol. 466, pp. 23–27. doi: 10.1134/S1607672916010075
  57. Mihai M., Valentin N., Bogdan D., Carmen C.M., Coralia B., Demetra S. Antibiotic susceptibility profiles of Mycoplasma hominis and Ureaplasma urealyticum isolated during a population-based study concerning women infertility in northeast Romania. Braz. J. Microbiol., 2011, vol. 42, no. 1, pp. 256–260. doi: 10.1590/S1517-83822011000100032
  58. Nakatani M., Mizunaga S., Takahata M., Nomura N. Inhibitory activity of garenoxacin against DNA gyrase of Mycoplasma pneumoniae. J. Antimicrob. Chemother., 2012, vol. 67, no. 8, pp. 1850 –1852. doi: 10.1093/jac/dks140
  59. Pagedar A., Singh J., Batish V.K. Eff lux mediated adaptive and cross resistance to ciprof loxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. J. Basic Microbiol., 2011, vol. 51, no. 3, pp. 289–295. doi: 10.1002/jobm.201000292
  60. Park S., Lee K.M., Yoo Y.S., Yoo J.S., Yoo J.I., Kim H.S., Lee Y.S., Chung G.T. Alterations of gyrA, gyrB, and parC and activity of eff lux pump in f luoroquinolone-resistant Acinetobacter baumannii. Osong Public Health Res. Perspect., 2011, vol. 2, no. 3, pp. 164–170. doi: 10.1016/j.phrp.2011.11.040
  61. Poirel L., Cattoir V., Nordmann P. Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Front Microbiol., 2012, vol. 3:24. doi: 10.3389/fmicb.2012.00024
  62. Puig C., Tirado-Vélez J.M., Calatayud L., Tubau F., Garmendia J., Ardanuy C., Marti S., de la Campa A.G., Liñares J. Molecular characterization of f luoroquinolone resistance in nontypeable Haemophilus inf luenzae clinical isolates. Antimicrob. Agents Chemother., 2015, vol. 59, no. 1, pp. 461–466. doi: 10.1128/AAC.04005-14
  63. Raherison S., Gonzalez P., Renaudin H., Charron A., Bébéar C., Bébéar C.M. Evidence of active eff lux in resistance to ciprof loxacin and to ethidium bromide by Mycoplasma hominis. Antimicrob. Agents Chemother., 2002, vol. 46, no. 3, pp. 672–679. doi: 10.1128/AAC.46.3.672-679.2002
  64. Raherison S., Gonzalez P., Renaudin H., Charron A., Bébéar C., Bébéar C.M. Increased expression of two multidrug transporter-like genes is associated with ethidium bromide and ciprof loxacin resistance in Mycoplasma hominis. Antimicrob. Agents Chemother., 2005, vol. 49, no. 1, pp. 421–424. doi: 10.1128/AAC.49.1.421-424.2005
  65. Reinhardt A.K., Kempf I., Kobisch M., Gautier-Bouchardon A.V. Fluoroquinolone resistance in Mycoplasma gallisepticum: DNA gyrase as primary target of enrof loxacin and impact of mutations in topoisomerases on resistance level. J. Antimicrob. Chemother., 2002, vol. 50, no. 4, pp. 589–592. doi: https://doi.org/10.1093/jac/dkf158
  66. Rice L.B. Mechanisms of resistance and clinical relevance of resistance to β-lactams, glycopeptides, and f luoroquinolones. Mayo Clin. Proc., 2012, vol. 87, no. 2, pp. 198–208. doi: 10.1016/j.mayocp.2011.12.003
  67. Rocha T.S., Bertolotti L., Catania S., Pourquier P., Rosati S. Genome sequence of a Mycoplasma meleagridis field strain. Genome Announc., 2016, vol. 4, no. 2, pp. 16–17. doi: 10.1128/genomeA.00017-16
  68. Rybak M.J. Pharmacodynamics: relation to antimicrobial resistance. Am. J. Med., 2006, vol. 119, no. 6, pp. 62–70. doi: 10.1016/j.ajic.2006.05.227
  69. Sahm D.F., Thornsberry C., Jones M.E., Karlowsky J.A. Factors inf luencing f luoroquinolone resistance. Emerg. Infect. Dis., 2003, vol. 9, no. 12, pp. 1651–1654. doi: 10.3201/eid0912.030168
  70. Saroj S.D., Clemmer K.M., Bonomo R.A., Rather P.N. Novel mechanism for f luoroquinolone resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother., 2012, vol. 56, no. 9, pp. 4955–4957. doi: 10.1128/AAC.00739-12
  71. Sato T., Yokota S., Okubo T., Ishihara K., Ueno H., Muramatsu Y., Fujii N., Tamura Y. Contribution of the AcrAB-TolC eff lux pump to high-level f luoroquinolone resistance in Escherichia coli isolated from dogs and humans. J. Vet. Med. Sci., 2013, vol. 75, no. 4, pp. 407–414.
  72. Shimada Y., Deguchi T., Nakane K., Masue T., Yasuda M., Yokoi S., Ito S., Nakano M., Ito S., Ishiko H. Emergence of clinical strains of Mycoplasma genitalium harbouring alterations in ParC associated with f luoroquinolone resistance. Int. J. Antimicrob. Agents, 2010, vol. 36, no. 3, pp. 255–258. doi: 10.1016/j.ijantimicag.2010.05.011
  73. Simm R., Vörös A., Ekman J.V., Sødring M., Nes I., Kroeger J.K., Saidijam M., Bettaney K.E., Henderson P.J., SalkinojaSalonen M., Kolstø A.B. BC4707 is a major facilitator superfamily multidrug resistance transport protein from Bacillus cereus implicated in f luoroquinolone tolerance. PLoS One, 2012, vol. 7, no. 5:36720. doi: 10.1371/journal.pone.0036720
  74. Smith J.L., Fratamico P.M. Fluoroquinolone resistance in campylobacter. J. Food Prot., 2010, vol. 73, no. 6, pp. 1141–1152.
  75. Swick M.C., Morgan-Linnell S.K., Carlson K.M., Zechiedrich L. Expression of multidrug eff lux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of f luoroquinolone and multidrug resistance. Antimicrob. Agents Chemother., 2011, vol. 55, no. 2, pp. 921–924. doi: 10.1128/AAC.00996-10
  76. Tagg K.A., Jeoffreys N.J., Couldwell D.L., Donald J.A., Gilbert G.L. Fluoroquinolone and macrolide resistance-associated mutations in Mycoplasma genitalium. J. Clin. Microbiol., 2013, vol. 51, no. 7, pp. 2245–2249. doi: 10.1128/JCM.00495-13
  77. Tkachenko O., Shepard J., Aris V.M., Joy A., Bello A., Londono I., Marku J., Soteropoulos P., Peteroy-Kelly M.A. A triclosanciprof loxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Res. Microbiol., 2007, vol. 158, no. 8–9, pp. 651–658. doi: 10.1016/j.resmic.2007.09.003
  78. Vranakis I., De Bock P.J., Papadioti A., Tselentis Y., Gevaert K., Tsiotis G., Psaroulaki A. Identification of potentially involved proteins in levof loxacin resistance mechanisms in Coxiella burnetii. J. Proteome Res., 2011, vol. 10, no. 2, pp. 756–762. doi: 10.1021/pr100906v
  79. Wasinger V.C., Pollack J.D., Humphery-Smith I. The proteome of Mycoplasma genitalium. Chaps-soluble component. Eur. J. Biochem., 2000, vol. 267, no. 6, pp. 1571–1582. doi: 10.1046/j.1432-1327.2000.01183.x
  80. Weinstein S.A., Stiles B.G. Recent perspectives in the diagnosis and evidence-based treatment of Mycoplasma genitalium. Expert Rev. Anti. Infect. Ther., 2012, vol. 10, no. 4, pp. 487–499. doi: 10.1586/eri.12.20
  81. Wolfson J.S., Hooper D.C. The f luoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother., 1985, vol. 28, no. 4, pp. 581–586.
  82. Xie X., Zhang J. Trends in the rates of resistance of Ureaplasma urealyticum to antibiotics and identification of the mutation site in the quinolone resistance-determining region in Chinese patients. FEMS Microbiol. Lett., 2006, vol. 259, no. 2, pp. 181–186. doi: 10.1111/j.1574-6968.2006.00239.x
  83. Yamaguchi Y., Takei M., Kishii R., Yasuda M., Deguchi T. Contribution of topoisomerase IV mutation to quinolone resistance in Mycoplasma genitalium. Antimicrob. Agents Chemother., vol. 57, no. 4, pp. 1772–1776. doi: 10.1128/AAC.01956-12
  84. Yamane T., Enokida H., Hayami H., Kawahara M., Nakagawa M. Genome-wide transcriptome analysis of f luoroquinolone resistance in clinical isolates of Escherichia coli. Int. J. Urol., 2012, vol. 19, no. 4, pp. 360 –368. doi: 10.1111/j.1442-2042.2011.02933.x
  85. Yamazaki T., Sasaki T., Takahata M. Activity of Garenoxacin against Macrolide-Susceptible and -Resistant Mycoplasma pneumoniae. Antimicrob. Agents Chemother., 2007, vol. 51, no. 6, pp. 2278–2279. doi: 10.1128/AAC.01561-06
  86. Yang S., Clayton S.R., Zechiedrich E.L. Relative contributions of the AcrAB, MdfA and NorE eff lux pumps to quinolone resistance in Escherichia coli. J. Antimicrob. Chemother., 2003, vol. 51, no. 3, pp. 545–556. doi: https://doi.org/10.1093/jac/dkg126
  87. Ye G., Jiang Z., Wang M., Huang J., Jin G., Lu S. The resistance analysis of Ureaplasma urealyticum and Mycoplasma hominis in female reproductive tract specimens. Cell Biochem. Biophys., 2014, vol. 68, no. 1, pp. 207–210. doi: 10.1007/s12013-013-9691-8
  88. Zhang W., Baseman J.B. Transcriptional response of Mycoplasma genitalium to osmotic stress. Microbiology, 2011, vol. 157, no. 2, pp. 548–556. doi: 10.1099/mic.0.043984-0

© Ваганова А.Н., 2017

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах