Deciphering crucial genes in pelvic inflammatory disease and their relationship with infertility through systems biology studies
- Authors: Saberi F.1, Dehghan Z.2, Pilehchi T.1, Mehdinejadiani S.3, Taheri Z.4, Zali H.1
-
Affiliations:
- Shahid Beheshti University of Medical Sciences
- Shiraz University of Medical Sciences
- University of Calgary
- Pavia University
- Issue: Vol 15, No 4 (2025)
- Pages: 664-672
- Section: ORIGINAL ARTICLES
- URL: https://journals.rcsi.science/2220-7619/article/view/352115
- DOI: https://doi.org/10.15789/2220-7619-DCG-17845
- ID: 352115
Cite item
Full Text
Abstract
Background. Pelvic inflammatory disease (PID) is an infection of the female reproductive system. PID is usually caused by infection with Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG). Women with PID have an increased risk of becoming infertility. The aim of this study was to determine the molecular mechanisms that influence infertility and embryonic development in PID with CT and NG infections.
Materials and methods. Microarray data were extracted from the Gene Expression Omnibus (GEO), and the protein-protein interaction network was constructed using Cytoscape software. Network analysis was performed to identify hub-bottlenecks and sub-networks. The functional mechanisms for critical genes were identified using the webgestalt server. Results. RPL13, EEF1G, JAK2, MYC, IL7R, CD74, IMPDH2, and NFAT5 were identified as crucial genes in protein-protein interactions and gene regulatory networks in CT and NG infections of PID. Ribosome, hematopoietic cell lineage, platelet activation, and Chagas disease, JAK-STAT pathway, eukaryotic translation elongation, Rap1 pathway, apoptosis, protein processing in the endoplasmic reticulum, progesterone-mediated oocyte maturation, and Epstein–Barr virus infection were identified as significant signaling pathways involving in CT and NG infections.
Conclusion. Our model suggests novel critical genes, and functional pathways involved in CT and NG infections, establishing a link between these infections and infertility. However, further studies in vitro and in vivo are needed.
Full Text
##article.viewOnOriginalSite##About the authors
F. Saberi
Shahid Beheshti University of Medical Sciences
Email: Hakimehzali@gmail.com
Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center
Iran, Islamic Republic of, TehranZ. Dehghan
Shiraz University of Medical Sciences
Email: Hakimehzali@gmail.com
Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Autoimmune Diseases Research Center
Iran, Islamic Republic of, ShirazT. Pilehchi
Shahid Beheshti University of Medical Sciences
Email: Hakimehzali@gmail.com
Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center
Iran, Islamic Republic of, TehranSh. Mehdinejadiani
University of Calgary
Email: Hakimehzali@gmail.com
Faculty of Veterinary Medicine, University of Calgary
Canada, CalgaryZ. Taheri
Pavia University
Email: Hakimehzali@gmail.com
Department of Biology and Biotechnology
Italy, PaviaHakimeh Zali
Shahid Beheshti University of Medical Sciences
Author for correspondence.
Email: Hakimehzali@gmail.com
PhD, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine
Iran, Islamic Republic of, TehranReferences
- Ades A., Price M.J., Kounali D., Akande V., Wills G.S., McClure M.O., Muir P., Horner P.J. Proportion of tubal factor infertility due to chlamydia: finite mixture modeling of serum antibody titers. Am. J. Epidemiol., 2017, vol. 185, no. 2, pp. 124–134. doi: 10.1093/aje/kww117
- Al Abdulmonem W., Rasheed Z., Al Ssadh H., Alkhamiss A., Aljohani A.S., Fernández N. Bacterial lipopolysaccharide induces the intracellular expression of trophoblastic specific CD74 isoform in human first trimester trophoblast cells: correlation with unsuccessful early pregnancy. J. Reprod. Immunol., 2020, vol. 141: 103152. doi: 10.1016/j.jri.2020.103152
- Amin S.M., Elkafrawy M.A.-S., El-Dawy D.M., Abdelfttah A.H. Relationship between mean platelet volume and recurrent miscarriage. Al-Azhar Assiut Med. J., 2020, vol. 18, no. 4, pp. 421–427. doi: 10.5114/aoms.2013.40095
- Brunham R.C., Gottlieb S.L., Paavonen J. Pelvic inflammatory disease. N. Engl. J. Med., 2015, vol. 372, no. 21, pp. 2039–2048. doi: 10.1056/NEJMra1411426
- Cai Y., Sukhova G.K., Wong H.K., Xu A., Tergaonkar V., Vanhoutte P.M., Tang E.H. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle, 2015, vol. 14, no. 22, pp. 3580–3592. doi: 10.1080/15384101.2015.1100771
- Ceppi M., Clavarino G., Gatti E., Schmidt E.K., de Gassart A., Blankenship D., Ogier-Denis E., Rodriguez F., Ricciardi-Castagnoli P., Pierre P. Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS. Immunome Res., 2009, vol. 5, pp. 1–12. doi: 10.1186/1745-7580-5-5
- Darville T. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. J. Infect. Dis., 2021, vol. 224, suppl. 2, pp. S39-S46. doi: 10.1093/infdis/jiab031
- Dehghanian M., Yarahmadi G., Sandoghsaz R.S., Khodadadian A., Shamsi F., Mehrjardi M.Y.V. Evaluation of Rap1GAP and EPAC1 gene expression in endometriosis disease. Adv. Biomed. Res., 2023, vol. 12: 86. doi: 10.4103/abr.abr_86_22
- Dix A., Vlaic S., Guthke R., Linde J. Use of systems biology to decipher host–pathogen interaction networks and predict biomarkers. Clin. Microbiol. Infect., 2016, vol. 22, no. 7, pp. 600–606. doi: 10.1016/j.cmi.2016.04.014
- Dzakah E.E., Huang L., Xue Y., Wei S., Wang X., Chen H., Wang Y., Huang Y., Wang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol., 2021, vol. 21, pp. 1–13. doi: 10.1186/s12866-020-02061-6
- Fryer R.H., Schwobe E.P., Woods M.L., Rodgers G.M. Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J. Investig. Med., 1997, vol. 45, no. 4, pp. 168–174.
- George Z., Omosun Y., Azenabor A.A., Goldstein J., Partin J., Joseph K., Igietseme J.U., Eko F.O. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem. Biophys. Res. Commun., 2019, vol. 508, no. 2, pp. 421–429. doi: 10.1016/j.bbrc.2018.11.034
- Ghoreschi K., Laurence A., O’Shea J.J. Janus kinases in immune cell signaling. Immunol. Rev., 2009, vol. 228, no. 1, pp. 273–287. doi: 10.1111/j.1600-065X.2008.00754.x
- Gottlieb S.L., Berman S.M., Low N. Screening and treatment to prevent sequelae in women with Chlamydia trachomatis genital infection: how much do we know? J. Infect. Dis., 2010, vol. 201, suppl. 2, pp. S156–S167. doi: 10.1086/652396
- Guan J., Han S., Wu J.E., Zhang Y., Bai M., Abdullah S.W., Liu X., Li Y., Zhang Y., Liu X., Hu Y., Li D., Zhang J. Ribosomal protein L13 participates in innate immune response induced by foot-and-mouth disease virus. Front. Immunol., 2021, vol. 12: 616402. doi: 10.3389/fimmu.2021.616402
- Guettler J., Forstner D., Gauster M. Maternal platelets at the first trimester maternal-placental interface — Small players with great impact on placenta development. Placenta., 2022, vol. 125, pp. 61–67. doi: 10.1016/j.placenta.2021.12.009
- Gusse M., Ghysdael J., Evan G., Soussi T., Méchali M. Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development. Mol. Cell. Biol., 1989, vol. 9, no. 12, pp. 5395–5403. doi: 10.1128/mcb.9.12.5395-5403.1989
- Hu Q., Bian Q., Rong D., Wang L., Song J., Huang H.-S., Wang L., Wang Y., Wang J., Liu Y., Zhou L. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol., 2023, vol. 11: 1110765. doi: 10.3389/fbioe.2023.1110765
- Hunt S., Vollenhoven B. Pelvic inflammatory disease and infertility. Aust. J. Gen. Pract., 2023, vol. 52, no. 4, pp. 215–218. doi: 10.31128/AJGP-09-22-6576
- Ietta F., Ferro E.A.V., Bevilacqua E., Benincasa L., Maioli E., Paulesu L. Role of the macrophage migration inhibitory factor (MIF) in the survival of first trimester human placenta under induced stress conditions. Sci. Rep., 2018, vol. 8, no. 1: 12150. doi: 10.1038/s41598-018-29797-6
- Ito M., Nakasato M., Suzuki T., Sakai S., Nagata M., Aoki F. Localization of janus kinase 2 to the nuclei of mature oocytes and early cleavage stage mouse embryos. Biol. Reprod., 2004, vol. 71, no. 1, pp. 89–96. doi: 10.1095/biolreprod.103.023226
- Iyyappan R., Aleshkina D., Ming H., Dvoran M., Kakavand K., Jansova D., Kolar F., Kovarova H., Kucerova D., Vojtek M., Zavadil J., Krivohlavek A., Svitilova J., Vyskocilova A., Vyskot B., Fulka J., Fulka H. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res., 2023, vol. 51, no. 22, pp. 12076–12091. doi: 10.1093/nar/gkad996
- Knoke K., Rongisch R.R., Grzes K.M., Schwarz R., Lorenz B., Yogev N., Scharffetter-Kochanek K., Kofler D.M. Tofacitinib suppresses IL-10/IL-10R signaling and modulates host defense responses in human macrophages. J. Invest. Dermatol., 2022, vol. 142, no. 3, pp. 559–570.e6. doi: 10.1016/j.jid.2021.07.180
- Köse C., Vatansever S., İnan S., Kırmaz C., Gürel Ç., Erışık D., Yıldız S., Kılıçarslan S. Evaluation of JAK/STAT Signaling Pathway-associated Protein Expression at Implantation Period: An Immunohistochemical Study in Rats. Anatol. J. Gen. Med. Res., 2022, vol. 32, no. 1. doi: 10.4274/terh.galenos.2021.22599
- Lad S.P., Fukuda E.Y., Li J., de la Maza L.M., Li E. Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. J. Immunol., 2005, vol. 174, no. 11, pp. 7186–7193. doi: 10.4049/jimmunol.174.11.7186
- Lee N., Kim D., Kim W.-U. Role of NFAT5 in the immune system and pathogenesis of autoimmune diseases. Front. Immunol., 2019, vol. 10: 270. doi: 10.3389/fimmu.2019.00270
- Lyons R.A., Saridogan E., Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum. Reprod. Update., 2006, vol. 12, no. 4, pp. 363–372. doi: 10.1093/humupd/dml012
- McGee Z.A., Johnson A.P., Taylor-Robinson D. Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J. Infect. Dis., 1981, vol. 143, no. 3, pp. 413–422. doi: 10.1093/infdis/143.3.413
- McGlade E.A., Miyamoto A., Winuthayanon W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells, 2022, vol. 11, no. 7: 1075. doi: 10.3390/cells11071075
- Mohr I., Sonenberg N. Host translation at the nexus of infection and immunity. Cell Host Microbe, 2012, vol. 12, no. 4, pp. 470–483. doi: 10.1016/j.chom.2012.09.006
- Nasuhidehnavi A., McCall L.-I. It takes two to tango: How immune responses and metabolic changes jointly shape cardiac Chagas disease. PLoS Pathog., 2023, vol. 19, no. 6: e1011399. doi: 10.1371/journal.ppat.1011399
- Negrutskii B., Shalak V., Novosylna O., Porubleva L., Lozhko D., El’skaya A. The eEF1 family of mammalian translation elongation factors. BBA Adv., 2023, vol. 3: 100067. doi: 10.1016/j.bbadva.2022.100067
- Ni S., Zhang T., Zhou C., Long M., Hou X., You L., Wang Y., Zhang M., Li Y. Coordinated formation of IMPDH2 Cytoophidium in mouse oocytes and granulosa cells. Front. Cell Dev. Biol., 2021, vol. 9: 690536. doi: 10.3389/fcell.2021.690536
- Peipert J.F., Ness R.B., Blume J., Soper D.E., Holley R., Randall H., Hendrix S.L., Amortegui A., Sweet R.L. Clinical predictors of endometritis in women with symptoms and signs of pelvic inflammatory disease. Am. J. Obstet. Gynecol., 2001, vol. 184, no. 5, pp. 856–864. doi: 10.1067/mob.2001.113847
- Rödel J., Große C., Yu H., Wolf K., Otto G.P., Liebler-Tenorio E., Menge C., Schneider T., Straube E., Solbach W., Klos A. Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infect. Immun., 2012, vol. 80, no. 1, pp. 195–205. doi: 10.1128/IAI.05619-11
- Rother M., Gonzalez E., da Costa A.R.T., Wask L., Gravenstein I., Pardo M., Sattler M., Hensel M. Combined human genome-wide RNAi and metabolite analyses identify IMPDH as a host-directed target against Chlamydia infection. Cell Host Microbe., 2018, vol. 23, no. 5, pp. 661–671.e8. doi: 10.1016/j.chom.2018.04.002
- Sameni M., Mirmotalebisohi S.A., Dehghan Z., Abooshahab R., Khazaei-Poul Y., Mozafar M., Shabgah A.G., Gholizadeh Navashenaq J. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech., 2023, vol. 13, no. 4: 117. doi: 10.1007/s13205-023-03518-x
- Scumpia P.O., Kelly-Scumpia K.M., Delano M.J., Weinstein J.S., Cuenca A.G., Al-Quran S., Bruhn K.W., Akira S., Moldawer L.L., Clare-Salzler M.J., Efron P.A. Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J. Immunol., 2010, vol. 184, no. 5, pp. 2247–2251. doi: 10.4049/jimmunol.0903652
- Su H., Na N., Zhang X., Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm. Res., 2017, vol. 66, pp. 209–216. doi: 10.1007/s00011-016-0995-1
- Tao H., Xiong Q., Ji Z., Zhang F., Liu Y., Chen M. NFAT5 is regulated by p53/miR-27a signal axis and promotes mouse ovarian granulosa cells proliferation. Int. J. Biol. Sci., 2019, vol. 15, no. 2, pp. 287–297. doi: 10.7150/ijbs.29273
- Varol E. The relationship between mean platelet volume and pelvic inflammatory disease. Wien. Klin. Wochenschr., 2014, vol. 126, pp. 659–660. doi: 10.1007/s00508-014-0587-4
- Virant-Klun I., Vogler A. In vitro maturation of oocytes from excised ovarian tissue in a patient with autoimmune ovarian insufficiency possibly associated with Epstein–Barr virus infection. Reprod. Biol. Endocrinol., 2018, vol. 16, no. 1, pp. 1–8. doi: 10.1186/s12958-018-0350-1
- Wang C., Kong L., Kim S., Lee S., Oh S., Jo S., Kim J., Lee S. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy. Int. J. Mol. Sci., 2022, vol. 23, no. 18: 10412. doi: 10.3390/ijms231810412
- Xin L., Xu B., Ma L., Hou Q., Ye M., Meng S., Liu X. Proteomics study reveals that the dysregulation of focal adhesion and ribosome contribute to early pregnancy loss. Proteom. Clin. Appl., 2016, vol. 10, no. 5, pp. 554–563. doi: 10.1002/prca.201500136
- Xu H., Su X., Zhao Y., Tang L., Chen J., Zhong G. Innate lymphoid cells are required for endometrial resistance to Chlamydia trachomatis infection. Infect. Immun., 2020, vol. 88, no. 7: e00152-20. doi: 10.1128/IAI.00152-20
- Yusuf H., Trent M. Management of pelvic inflammatory disease in clinical practice. Ther. Clin. Risk Manag., 2023, pp. 183–192. doi: 10.2147/TCRM.S350750
- Zhang D., Zhu L., Wang F., Li P., Wang Y., Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int. J. Biol. Macromol., 2023, pp. 124680. doi: 10.1016/j.ijbiomac.2023.124680
- Zhang J., Chen Z., Fritz J.H., Rochman Y., Leonard W.J., Gommerman J.L., Zhu J. Unusual timing of CD127 expression by mouse uterine natural killer cells. J. Leukoc. Biol., 2012, vol. 91, no. 3, pp. 417–426. doi: 10.1189/jlb.1011501
- Zheng X., O'Connell C.M., Zhong W., Nagarajan U.M., Tripathy M., Lee D., Russell A.N., Wiesenfeld H., Hillier S., Darville T. Discovery of Blood Transcriptional Endotypes in Women with Pelvic Inflammatory Disease. J. Immunol., 2018, vol. 200, no. 8, pp. 2941–2956. doi: 10.4049/jimmunol.1701658
- Zhu H., Chen J., Liu K., Gao L., Wu H., Ma L., Liu Y., Zhang Y., Wang Y. Human PBMC scRNA-seq–based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. Sci. Adv., 2023, vol. 9, no. 26: eabq7599. doi: 10.1126/sciadv.abq7599
Supplementary files






