Pathogenesis of autoimmune inflammation in COVID-19: a literature review

Cover Page

Cite item

Full Text

Abstract

The literature review examines the mechanisms underlying formation of autoantibodies to angiotensin converting enzyme (ACE) in COVID-19. The similarity of the autoimmune processes revealed in the new coronavirus infection and the inflammatory reactions previously studied in experimental models is shown. Plausible ways for developing neurodegenerative and rheumatic diseases and rheumatic diseases in patients after a new coronavirus infection are presented. The results of clinical studies have shown that COVID-19 convalescent patients often have serum antibodies to ACE type 2 (ACE2-specific antibodies), which are absent in non-COVID-19 apparently healthy individuals. The authors note that higher level of such antibodies was paralleled with more severe COVID-19. ACE2 is known to catalyze the degradation of angiotensin I and angiotensin II, and also converts angiotensin II into angiotensin 1–7, which has vasodilating, anti-inflammatory, and antifibrotic effects. Accordingly, low ACE2 level along with anti-ACE2 antibodies imprints progression of inflammation and tissue fibrosis, which obviously markedly exacerbates the course of the infectious and inflammatory process and increases the severity of irreversible post-inflammatory changes. Intravenous administration of heterologous polyclonal antibodies against pulmonary ACE has been shown to cause acute fatal pulmonary edema. Autoantibodies to ACE2 cause a predisposition of patients with connective tissue diseases to constrictive vasculopathy, pulmonary arterial hypertension and persistent digital ischemia, which was noted in a number of patients with severe COVID-19. Thus, COVID-19 is a very complex process that involves not only classical infectious and inflammatory, but also autoimmune reactions in human body. COVID-19 severity depends on magnitude of internal organs and body systems impairment. Improper treatment can provoke or activate autoimmune processes, including rheumatic and neurodegenerative diseases, which should be taken into account when choosing treatment regimens, including cases of new SARS-CoV-2 variants. The information summarized in the literature review substantiates a need for using immunosuppressive therapy in case of deterioration in COVID-19 patients.

About the authors

A. V. Volkov

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: ruzhencova@gmail.com

PhD (Medicine), Leading Researcher, Laboratory of Immunobiological Drugs

Russian Federation, Moscow

Tatiana A. Ruzhentsova

Moscow Medical University “Reaviz”

Author for correspondence.
Email: ruzhencova@gmail.com

DSc (Medicine), Head of the Department of Internal Diseases, Head of the Department of Clinical Medicine, Head of the Department of Science and Innovation

Russian Federation, Moscow

References

  1. Купкенова Л.М., Шамсутдинова Н.Г., Одинцова А.Х., Черемина Н.А., Исхакова Д.Г., Абдулганиева Д.И. Постковидный синдром у пациентов с воспалительными заболеваниями кишечника // РМЖ. Медицинское обозрение. 2022. Т. 6, № 5. С. 227–231. [Kupkenova L.M., Shamsutdinova N.G., Odintsova A.Kh., Cheremina N.A., Iskhakova D.G., Abdulganieva D.I. Postcovid syndrome in patients with inflammatory bowel diseases. RMZh. Meditsinskoe obozrenie = Russian Medical Inquiry, 2022, vol. 6, no. 5, pp. 227–231. (In Russ.)] doi: 10.32364/2587-6821-2022-6-5-227-231
  2. Руженцова Т.А., Горелов А.В. Значение острых респираторных вирусных инфекций в развитии хронической патологии сердца у детей // Эпидемиология и инфекционные болезни. 2012. № 3. С. 42–46. [Ruzhentsova T.A., Gorelov A.V. The value of acute respiratory viral infections in the development of chronic heart failure disease in children. Epidemiologiya i infektsionnye bolezni = Epidemiology and Infectious Diseases, 2012, no. 3, pp. 42–46. (In Russ.)] doi: 10.17816/EID40658
  3. Руженцова Т.А., Плоскирева А.А., Горелов А.В. Осложнения ротавирусной инфекции у детей // Педиатрия. Журнал им. Г.Н. Сперанского. 2016. Т. 95, № 2. С. 38–43. [Ruzhentsova T.A., Ploskireva A.A., Gorelov A.V. Complications of rotavirus infection in children. Pediatriya. Zhurnal im. G.M. Speranskogo = Pediatrics. Journal named after G.M. Speransky, 2016, vol. 95, no. 2, pp. 38–43. (In Russ.)]
  4. Руженцова Т.А., Плоскирева А.А., Щербаков И.Т., Исаева Е.И., Бондарева А.В., Горелов А.В. Поражения миокарда при Коксаки А вирусной инфекции // Фундаментальные исследования. 2015. № 1–5. С. 1033–1037. [Ruzhentsova T.A., Ploskireva A.A., Shherbakov I.T., Isaeva E.I., Bondareva A.V., Gorelov A.V. Myocardial lesions in Coxsackie A virus infection. Fundamental’nye issledovaniya = Fundamental Research, 2015, no. 1–5, pp. 1033–1037. (In Russ.)]
  5. Arthur J.M., Forrest J.C., Boehme K.W., Kennedy J.L., Owens S., Herzog C., Liu J., Harville T.O. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS One, 2021, vol. 16, no. 9: e0257016. doi: 10.1371/journal.pone.0257016
  6. Barba L.M., Caldwell P.R., Downie G.H., Camussi G., Brentjens J.R., Andres G. Lung injury mediated by antibodies to endothelium. I. In the rabbit a repeated interaction of heterologous anti-angiotensin-converting enzyme antibodies with alveolar endothelium results in resistance to immune injury through antigenic modulation. J. Exp. Med., 1983, vol. 158, no. 6, pp. 2141–2158. doi: 10.1084/jem.158.6.2141
  7. Caldwell P.R., Wigger H.J., Fernandez L.T., D’Alisa R.M., Tse-Eng D., Butler V.P. Jr., Gigli I. Lung injury induced by antibody fragments to angiotensin-converting enzyme. Am. J. Pathol., 1981, vol. 105, no. 1, pp. 54–63.
  8. Camussi G., Biesecker G., Caldwell P.R., Biancone L., Andres G., Brentjens J.R. Role of the membrane attack complex of complement in lung injury mediated by antibodies to endothelium. Allergy Immunol., 1993, vol. 102, no. 3, pp. 216–223. doi: 10.1159/000236529
  9. Camussi G., Pawlowski I., Bussolino F., Caldwell P.R., Brentjens J., Andres G. Release of platelet activating factor in rabbits with antibody-mediated injury of the lung: the role of leukocytes and of pulmonary endothelial cells. J. Immunol., 1983, vol. 131, no. 4, pp. 1802–1807.
  10. Cantor J.O. CRC Handbook of Animal Models of Pulmonary Disease, Volume I. CRC Press, Inc., 1989, 266 p. doi: 10.1201/9781351070966
  11. Chen Y., Huang D., Yuan W., Chang J., Yuan Z., Wu D., Han M., Luo X., Ning Q., Yan W. Lower Serum Angiotensin-Converting Enzyme Level in Relation to Hyperinflammation and Impaired Antiviral Immune Response Contributes to Progression of COVID-19 Infection. Infect. Dis. Ther., 2021, vol. 10, no. 4, pp. 2431–2446. doi: 10.1007/s40121-021-00513-8
  12. Davalos D., Akassoglou K. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol., 2012, vol. 34, no. 1, pp. 43–62. doi: 10.1007/s00281-011-0290-8
  13. Hosman I.S., Kos I., Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front. Immunol., 2020, no. 11: 631299. doi: 10.3389/fimmu.2020.631299
  14. Imai Y., Kuba K., Penninger J.M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Physiol., 2008, vol. 93, no. 5, pp. 543–548. doi: 10.1113/expphysiol.2007.040048
  15. Janciauskiene S. Acute Phase Proteins. IntechOpen, 2013, 190 p. doi: 10.5772/46063
  16. Kehoe P.G., Wong S., Al Mulhim N., Palmer L.E., Miners J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther., 2016, vol. 8, no. 1: 50. doi: 10.1186/s13195-016-0217-7
  17. Labandeira C.M., Pedrosa M.A., Quijano A., Valenzuela R., Garrido-Gil P., Sanchez-Andrade M., Suarez-Quintanilla J.A., Rodriguez-Perez A.I., Labandeira-Garcia J.L. Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson’s disease. NPJ Parkinsons Dis., 2022, vol. 8, no. 1: 76. doi: 10.1038/s41531-022-00340-9
  18. Liu S., Liu J., Miura Y., Tanabe C., Maeda T., Terayama Y., Turner A.J., Zou K., Komano H. Conversion of Aβ43 to Aβ40 by the successive action of angiotensin-converting enzyme 2 and angiotensin-converting enzyme. J. Neurosci. Res., 2014, vol. 92, no. 9, pp. 1178–1186. doi: 10.1002/jnr.23404.
  19. Matsuo S., Caldwell P.R., Brentjens J.R., Andres G. In vivo interaction of antibodies with cell surface antigens. A mechanism responsible for in situ formation of immune deposits in the zona pellucida of rabbit oocytes. J. Clin. Invest., 1985, vol. 75, no. 4, pp. 1369–1380. doi: 10.1172/JCI111838
  20. Matsuo S., Fukatsu A., Taub M.L., Caldwell P.R., Brentjens J.R., Andres G. Glomerulonephritis induced in the rabbit by antiendothelial antibodies. J. Clin. Invest., 1987, vol. 79, no. 6, pp. 1798–1811. doi: 10.1172/JCI113021
  21. McCormick J.R., Thrall R.S., Kerlin A., Ward P.A. In vitro and in vivo effects of antibody to rat angiotensin converting enzyme. Clin. Immunol. and Immunopathol., 1980, vol. 15, no. 3, pp. 444–455. doi: 10.1016/0090-1229(80)90056-2
  22. McMillan P., Dexhiemer T., Neubig R.R., Uhal B.D. COVID-19 — A Theory of Autoimmunity Against ACE-2 Explained. Front. Immunol., 2021, no. 12: 582166. doi: 10.3389/fimmu.2021.582166
  23. McMillan P., Uhal B.D. COVID-19 — A theory of autoimmunity to ACE-2. MOJ Immunol., 2020, vol. 7, no. 1, pp. 17–19.
  24. Takahashi Y., Haga S., Ishizaka Y., Mimori A. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res. Ther., 2010, vol. 12, no. 3: R85. doi: 10.1186/ar3012
  25. Thomas D.L. Immunoglobulin M ACE2 autoantibodies associated with severe COVID-19. News Med., 2020. URL: https://www.news-medical.net/news/20201019/Immunoglobulin-M-ACE2-autoantibodies-associated-with-severe-COVID-19.aspx
  26. Townsend A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Med. Hypotheses, 2020, vol. 144, no. 13: 110043. doi: 10.1016/j.mehy.2020.110043
  27. Zou K., Yamaguchi H., Akatsu H., Sakamoto T., Ko M., Mizoguchi K., Gong J.S., Yu W., Yamamoto T., Kosaka K., Yanagisawa K., Michikawa M. Angiotensin-Converting Enzyme Converts Amyloid β-Protein 1–42 (Aβ1–42) to Aβ1–40, and Its Inhibition Enhances Brain Aβ Deposition. J. Neurosci., 2007, vol. 27, no. 32, pp. 8628–8635. doi: 10.1523/JNEUROSCI.1549-07.2007

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Volkov A.V., Ruzhentsova T.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».