用于骨移植且添加有纳米银粒子的钛镍化物的抗菌活性和生物相容性实验研究

封面

如何引用文章

全文:

详细

现实意义。本研究之所以具有现实意义,是因为在儿童和成人的骨组织增强手术中,感染性并发症的数量一直居高不下。目前,多孔镍化钛(TiNi)合金是用于骨移植的首选材料之一。尽管多孔镍钛合金在与人体的生物化学和生物力学相容性方面具有明显的优势,但有关该合金抗菌活性的研究仍在继续,以对抗植入物-生物组织界面感染的发生。

本研究旨在通过实验对添加纳米银粒子的多孔钛镍合金的生物相容性抗菌表面进行研究。

材料与方法。采用自蔓延高温合成法,利用镍、钛粉末和纳米银粉末(浓度分别为0.2原子%银、 0.5原子%银和1.0原子%银)制备了孔隙率为62%的钛镍合金。实验在9只性成熟的雌性白色实验鼠上进行。大鼠被分为3组,每组3只,所有动物都被植入多孔颗粒状的含银添加剂的镍化钛。第一组为对照组,第二组为0.2原子%银,第三组为0.5原子%银。为测定其杀菌活性,采用了标准方法,即在液体肉汤中培养表皮葡萄球菌,同时加入所研究的样品,然后在固体培养基上播种并对菌落进行计数。

结果。随着银浓度的增加,样本对表皮葡萄球菌的抗菌效果逐渐增强。实验与对照之间的差异经学生检验(P < 0.005)证实具有显著性,而不含纳米银的样本与对照之间没有显著差异。这表明这些合金因含有纳米银粒子而具有生物活性特性。银浓度为0.5原子%的合金对表皮葡萄球菌的抗菌能力最强。在对实验结果进行临床评估时,发现所有动物均未出现化脓性炎症并发症。第75天,动物接受了计算机断层扫描,结果显示骨缺损填充良好,骨和软组织与材料接触区域无退行性影响。

结论。研究发现,当纳米银粒子的浓度增加到0.5原子%时,植入物的抗菌活性和细胞相容性都有所提高。在实验室大鼠身上进行的各组动物临床实验评估表明,含0.5原子%银的合金在植入后立即开始骨整合,与其他组相比,提前2周完成骨整合。所获得的数据表明,在创伤学和矫形外科的各个领域中应用这种类型的增强剂具有进一步研究的前景。

作者简介

Semyon A. Borisov

Ural State Medical University

Email: drborissovsa@gmail.com
ORCID iD: 0000-0002-1783-3776
SPIN 代码: 5782-1443
俄罗斯联邦, Yekaterinburg

Ivan I. Gordienko

Ural State Medical University

编辑信件的主要联系方式.
Email: ivan-gordienko@mail.ru
ORCID iD: 0000-0003-3157-4579
SPIN 代码: 5368-0964

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Yekaterinburg

Natalya A. Tsap

Ural State Medical University

Email: tsapna-ekat@rambler.ru
ORCID iD: 0000-0001-9050-3629
SPIN 代码: 7466-8731

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Yekaterinburg

Gulsharat A. Baigonakova

National Research Tomsk State University

Email: gat27@mail.ru
ORCID iD: 0000-0001-9853-2766
SPIN 代码: 1192-6016

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Tomsk

Ekaterina S. Marchenko

National Research Tomsk State University

Email: 89138641814@mail.ru
ORCID iD: 0000-0003-4615-5270
SPIN 代码: 7116-2901

Dr. Sci. (Physics and Mathematics)

俄罗斯联邦, Tomsk

Victor A. Larikov

National Research Tomsk State University

Email: calibra1995@gmail.com
ORCID iD: 0009-0002-3365-5997
俄罗斯联邦, Tomsk

参考

  1. Bozic KJ, Ries MD. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am. 2005;87(8):1746–1751. doi: 10.2106/JBJS.D.02937
  2. Khon VE, Zagorodniy NV, Komlev VS, et al. Nfluence of the degree of calcium substitution by argentum in tricalcium phosphate on its biological properties in vitro. N.N. Priorov journal of traumatology and orthopedics. 2013;20(4):23–28. EDN: RTKACB
  3. Czyzewski K, Galazka P, Zalas-Wiecek P, et al. Infectious complications in children with malignant bone tumors: a multicenter nationwide study. Infect Drug Resist. 2019;30(12):1471–1480. doi: 10.2147/IDR.S199657
  4. Lake J, Gordon O. Implant-associated spinal infections in children: how can we improvediagnosis and management? Infect Dis Clin North Am. 2022;36(1):101–123. doi: 10.1016/j.idc.2021.11.005
  5. Yasenchuk YuF, Gyunter SV, Marchenko ES, Iuzhakov MM. Biocompatibility of porous SHS-TiNi. Mater Sci Forum. 2019;970(12):320–327. doi: 10.4028/ href='www.scientific.net/MSF.970.320' target='_blank'>www.scientific.net/MSF.970.320
  6. Topolnitskiy E, Chekalkin T, Marchenko E, et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors. J Funct Biomater. 2021;12(4):60–71. doi: 10.3390/jfb12040060
  7. Sevilla P, Aparicio C, Planell JA, Gil FJ. Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials for bone ingrowth applications. J Alloys Compd. 2007;439(1-2):67–73. doi: 10.1016/j.jallcom.2006.08.069
  8. Hornbogen E. Microstructure and thermo-mechanical properties of NiTi shape memory alloys. Mater Sci Forum. 2004;455(2):335–341. doi: 10.4028/ href='www.scientific.net/MSF.455-456.335' target='_blank'>www.scientific.net/MSF.455-456.335
  9. Marchenko ES, Luchsheva V, Baigonakova GA, et al. Functionalization of the surface of porous nickel-titanium alloy with macrocyclic compounds. Materials. 2022;16(1):66–78. doi: 10.3390/ma16010066
  10. Marchenko ES, Baigonakova GA, Yasenchuk YF, et al. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol. Ceram Int. 2022;48(22):33514–33523. doi: 10.1016/j.ceramint.2022.07.296
  11. Oh K-T, Joo U-H, Park G-H, et al. Effect of silver addition on the properties of nickel-titanium alloys for dental application. J Biomed Mater. 2006;76B(12):306–314. doi: 10.1002/jbm.b.30369
  12. Zhao L, Chu PK, Zhang Y, Wu Z. Antibacterial coatings on titanium implants. J Biomed Mater Res. 2009;91(1):470–480. doi: 10.1002/jbm.b.31463
  13. Chouirfa H, Bouloussa H, Migonney V, Falentin-Daudré C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia. 2019;83(1):37–54. doi: 10.1016/j.actbio.2018.10.036
  14. Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants. Mater Sci Eng. 2016;61(2):965–978. doi: 10.1016/j.msec.2015.12.062
  15. Schmidt-Braekling T, Streitbuerger A, Gosheger G, et al. Silver-coated megaprostheses: review of the literature. Eur J Orthop Surg Traumatol. 2017;27(4):483–489. doi: 10.1007/s00590-017-1933-9
  16. Liu X, Gan K, Liu H, et al. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering. Dent Mater. 2017;33(9):348–360. doi: 10.1016/j.dental.2017.06.014
  17. Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine, nanotechnology, biology, and medicine. 2007;3(1):95–101. doi: 10.1016/j.nano.2006.12.001
  18. Aurore V, Caldana F, Blanchard M, et al. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine. 2018;14(2):601–607. doi: 10.1016/j.nano.2017.11.006
  19. Praba VL, Kathirvel M, Vallayyachari K, et al Bactericidal effect of silver nanoparticles against mycobacterium tuberculosis. J Bionanosci. 2013;7(3):282–287. doi: 10.1166/jbns.2013.1138
  20. Van Dong P, Ha CH, Binh LT, et al. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett. 2012;2(2):9–18. doi: 10.1186/2228-5326-2-9
  21. Thangavel E, Dhandapani VS, Dharmalingam K, et al. RF magnetron sputtering mediated NiTi/Ag coating on Ti-alloy substrate with enhanced biocompatibility and durability. Mater Sci Eng. 2019;99(4):304–314. doi: 10.1016/j.msec.2019.01.099
  22. Martinez-Gutierrez F, Olive PL, Banuelos A, et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine: nanotechnology, biology, and medicine. 2010;6(5):681–688. doi: 10.1016/j.nano.2010.02.001
  23. Albers CE, Hofstetter W, Siebenrock KA, et al. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology. 2013;7(1):30–36. doi: 10.3109/17435390.2011.626538
  24. Marchenko ES, Baigonakova GA, Kokorev OV, et al. Phase equilibrium, structure, mechanical and biocompatible properties of TiNi-based alloy with silver. Mater. Res. Express. 2019;6(6):1–11. doi: 10.1088/2053-1591/ab0edd
  25. Pauksch L, Rohnke M, Schnettler R, Lips KS. Silver nanoparticles do not alter human osteoclastogenesis but induce cellular uptake. Toxicol Rep. 2014;1(1):900–908. doi: 10.1016/j.toxrep.2014.10.012
  26. Goodman SB, Yao Z, Keeney M, Yang F. The future of biologic coatings for orthopaedic implants. Biomaterials. 2013;34(13):3174–3183. doi: 10.1016/j.biomaterials.2013.01.074
  27. Marchenko E, Baigonakova G, Larikov V, et al. Structure and mechanical properties of porous TiNi alloys with Ag nanoparticles. Coatings. 2023;13(1):24–37. doi: 10.3390/coatings13010024
  28. Boudreau MD, Imam MS, Paredes AM, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci. 2016;150(1):131–160. doi: 10.1093/toxsci/kfv318
  29. Guo H, Zhang J, Boudreau M, et al. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Part Fibre Toxicol. 2016;13(3):21–33. doi: 10.1186/s12989-016-0133-99

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Antibacterial activity against S. epidermidis: a, vertical value expressed in CFU; b, examples of inoculations on solid agar

下载 (94KB)
3. Fig. 2. Raster image of the surface after cultivation of samples of porous alloys: a — TiNi; b — TiNi + 0.2 at.% Ag; c —TiNi + 0.5 at.% Ag

下载 (245KB)
4. Fig. 3. Quantitative analysis of cell viability on the surface of samples of porous TiNi alloys

下载 (74KB)
5. Fig. 4. Computed tomography. Sagittal scan of a laboratory rat. Selected material installed in the medullary canal of the femur 75 days from implantation

下载 (80KB)
6. Fig. 5. Computed tomography. Three-dimensional image of a laboratory rat. The implantation site in the bone and surrounding soft tissues is highlighted; image was taken 75 days after implantation

下载 (177KB)
7. Fig. 6. Distribution of silver in a TiNi + 0.5 at.% Ag sample: a — TEM image and electron microdiffraction pattern of Ag; b–e — STEM-EDS elemental mapping*. *STEM — Scanning transmission electron microscopy; EDS — Energy dispersive spectroscopy

下载 (258KB)
##common.cookie##