2025 national clinical huideline for sepsis in children

Cover Page

Cite item

Full Text

Abstract

This article is an adapted version of the federal clinical guidelines on sepsis in children, developed by the specialists of the Association of Pediatric Anesthesiologists and Intensivists of Russia and approved by the Ministry of Health of the Russian Federation on October 10, 2025. Definitions of sepsis and septic shock in pediatric patients are substantiated, including their criteria. Data on etiology and pathogenesis, epidemiology, clinical presentation, and diagnosis of shock are presented. Recommendations for intensive care management of sepsis and septic shock include sections on antimicrobial therapy in pediatric sepsis, hemodynamic, respiratory, and nutritional support, renal replacement therapy and extracorporeal blood purification, and adjuvant therapy. It also discusses controversial issues related to the use of immunomodulatory agents, corticosteroids, and vitamins. The work emphasizes that in children with septic shock, antimicrobial therapy should be initiated no later than 1 hour after diagnosis, whereas in the absence of shock it should be started no later than 3 hours after diagnosis. It is noted that infusion therapy in children with septic shock during the first hour after diagnosis should not exceed 40 mL/kg in order to prevent fluid overload, with balanced crystalloid electrolyte solutions recommended as first-line agents for volume resuscitation. In septic shock, norepinephrine and epinephrine are the drugs of choice for hemodynamic correction, whereas dopamine is not recommended. It is demonstrated that septic shock and severe acute respiratory distress syndrome are absolute indications for invasive mechanical ventilation using lung-protective strategies. The importance of early initiation of enteral nutrition in children with sepsis and septic shock is emphasized; it is considered justified even during infusion of inotropic agents provided that hemodynamic parameters are stable. Renal replacement therapy is indicated not only for substitution of renal function but also for correction of fluid overload when diuretic therapy is ineffective. Convincing evidence is presented that the use of plasma exchange and sorption techniques in children with sepsis and septic shock is currently not recommended. It is noted that hydrocortisone therapy in children with sepsis is justified only in refractory septic shock. Modern principles of metabolic management in sepsis are described, indicating that optimal blood glucose levels in children should not exceed 7.8 mmol/L; insulin therapy is justified when blood glucose levels exceed 10 mmol/L. Data on rehabilitation, prevention, and organization of medical care for pediatric sepsis are also provided.

About the authors

Andrey U. Lekmanov

Pirogov Russian Research Medical University

Email: aulek@rambler.ru
ORCID iD: 0000-0003-0798-1625
SPIN-code: 3630-5061

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Petr I. Mironov

Bashkir State Medical University

Email: mironovpi@mail.ru
ORCID iD: 0000-0002-9016-9461
SPIN-code: 5617-6616

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Ufa

Yurii S. Aleksandrovich

Saint Petersburg State Pediatric Medical University

Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN-code: 2225-1630

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Saint Petersburg

Dmitry K. Azovskiy

Moscow Multidisciplinary Clinical Center “Kommunarka”

Email: azovskii.dk@medsigroup.ru
ORCID iD: 0000-0003-2352-0909
SPIN-code: 3100-6771

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Dmitry A. Popov

A.N. Bakulev National Medical Research Center for Cardiovascular Surgery

Email: da_popov@inbox.ru
ORCID iD: 0000-0003-1473-1982
SPIN-code: 6694-6714

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Konstantin V. Pshenisnov

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: Psh_K@mail.ru
ORCID iD: 0000-0003-1113-5296
SPIN-code: 8423-4294

MD, Dr. Sci. (Medicine), Assistant Professor

Russian Federation, Saint Petersburg

Aleksandr L. Muzurov

Russian Medical Academy of Continuous Professional Education

Email: al_muz@mail.ru
ORCID iD: 0000-0003-4131-9440
SPIN-code: 8489-9991

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Association of Pediatric Anesthesiologists and Resuscitators of Russia. Sepsis. Clinical guidelines. Moscow: Ministry of Health of the Russian Federation; 2025. (In Russ.) Available from: https://cr.minzdrav.gov.ru/view-cr/953_1
  2. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  3. Schlapbach LJ, Watson RS, Sorce LR et al. International Consensus Criteria for Pediatric Sepsis and Septic Shock. JAMA. 2024;331(8):665–674. doi: 10.1001/jama.2024.0179
  4. Lekmanov AU, Mironov PI, Aleksandrovich YuS et al. Sepsis in children: federal clinical guideline (draft). Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2021;11(2):241–293. doi: 10.17816/psaic969 EDN: UDVCKO
  5. Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171(10):e172352. doi: 10.1001/jamapediatrics.2017.2352
  6. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020;396(10219):200–211. doi: 10.1016/S0140-6736(19)32989-7
  7. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9
  8. Agyeman PKA, Schlapbach LJ, Giannoni E, et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. Lancet Child Adolesc Health. 2017;1(2):124–133. doi: 10.1016/S2352-4642(17)30010-X
  9. Martischang R, Pires D, Masson-Roy S, et al. Promoting and sustaining a historical and global effort to prevent sepsis: the 2018 World Health Organization SAVE LIVES, Clean Your Hands campaign. Crit Care. 2018;22:7–9. doi: 10.1186/s13054-018-2011-3
  10. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348(2):138–150. doi: 10.1056/NEJMra021333
  11. Legrand M, De Backer D, Dépret F, Ait-Oufella H. Recruiting the microcirculation in septic shock. Ann Intensive Care. 2019;9:102. doi: 10.1186/s13613-019-0577-9
  12. Sinert RH Fast five quiz: Refresh your knowledge on key aspects of sepsis. Medscape. 2018;172:312–314.
  13. Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172(4):312–314. doi: 10.1001/jamapediatrics.2017.5208
  14. de Souza DC, Machado FR. Epidemiology of pediatric septic shock. J Pediatr Intensive Care. 2019;8(1):3–10. doi: 10.1055/s-0038-1676634
  15. Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15(9):798–805. doi: 10.1097/PCC.0000000000000225
  16. Weiss SL, Fitzgerald JC, Pappachan J, et al. Sepsis prevalence, outcomes, and therapies (SPROUT) study investigators and pediatric acute lung injury and sepsis investigators (PALISI) network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191(10):1147–1115. doi: 10.1164/rccm.201412-2323OC
  17. Boeddha N, Schlapbach N, Driessen G, et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit Care. 2018;22:143. doi: 10.1186/s13054-018-2052-7
  18. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020;46(1):10–67. doi: 10.1007/s00134-019-05878-6
  19. Killien EY, Farris RWD, Watson RS, et al. Health-related quality of life among survivors of pediatric sepsis. Pediatr Crit Care Med. 2019;20(6):501–509. doi: 10.1097/PCC.0000000000001886
  20. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45(9):1061–1093. doi: 10.1097/CCM.00do00000000002425
  21. Zabolotskikh IB, Protsenko DN, editors. Intensive therapy: national leadership: in 2 vols. Vol. II. 2nd ed., Revised and suppl. Moscow: GEOTAR-Media; 2020. 1072 p. (In Russ.)
  22. Malik A, Taksande A, Meshram R. Pediatric sequential organ assessment score: a comprehensive review of the prognostic marker in the pediatric intensive care unit. Cureus. 2024;16(5):e60034. doi: 10.7759/cureus.60034
  23. Trembach АV, Bgane NM, Trembach IA, et al. Comparative assessment of the prognostic ability of paediatric Sequential Organ Failure Assessment (pSOFA), paediatric logistic organ dysfunction 2 (PELOD 2) and Vasoactive-Inotropic Score (VIS) in children with septic shock: a retrospective observational study. Annals of Critical Care. 2024;(1):94–101. doi: 10.21320/1818-474X-2024-1-94-101 EDN: OTSTLI
  24. Loberger JM, Aban IB, Prabhakaran P. Exploration of sepsis-associated coagulopathy severity and pediatric septic shock outcomes. J Pediatr Intensive Care. 2021;10(1):38–44. doi: 10.1055/s-0040-1713436
  25. Jhang WK, Park SJ. Evaluation of sepsis-induced coagulopathy in critically ill pediatric patients with septic shock. Thromb Haemost. 2021;121(4):457–463. doi: 10.1055/s-0040-1718736
  26. Schlapbach LJ, MacLaren G, Festa M, et al. Prediction of pediatric sepsis mortality within 1h of intensive care admission. Intensive Care Med. 2017;43:1085–1096. doi: 10.1007/s00134-017-4701-8
  27. Schlapbach LJ, MacLaren G, Straney L. Venous vs arterial lactate and 30-day mortality in pediatric sepsis. JAMA Pediatr. 2017;171(8):813. doi: 10.1001/jamapediatrics.2017.1598
  28. Scott HF, Brou L, Deakyne SJ, et al. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171(3):249–255. doi: 10.1001/jamapediatrics.2016.3681
  29. Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004;32(8):1637–1642. doi: 10.1097/01.CCM.0000132904.35713.A7
  30. Morin L, Ray S, Wilson C, et al. Refractory septic shock in children: a European Society of Paediatric and Neonatal Intensive Care definition. Intensive Care Med. 2016;42(12):1948–1957. doi: 10.1007/s00134-016-4574-2
  31. Gorgis N, Asselin JM, Fontana C, et al. Evaluation of the association of early elevated lactate with outcomes in children with severe sepsis or septic shock. Pediatr Emerg Care. 2019;35(10):661–665. doi: 10.1097/PEC.0000000000001021
  32. Bai Z, Zhu X, Li M, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014;14:83. doi: 10.1186/1471-2431-14-83
  33. Scott HF, Brou L, Deakyne SJ, et al. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J Pediatr. 2016;170:149–155.e4. doi: 10.1016/j.jpeds.2015.11.071
  34. Bakker J, Maarten WN, Jansen TC. Clinical use of lactate monitoring in critically ill patients. Annals of Intensive Care. 2013;3:12. doi: 10.1186/2110-5820-3-12
  35. Mazloom A, Sears SM, Carlton EF, et al. Implementing pediatric surviving sepsis campaign guidelines: improving compliance with lactate measurement in the PICU. Crit Care Explor. 2023;5(4):e0906. doi: 10.1097/CCE.0000000000000906
  36. Downes KJ, Fitzgerald JC, Schriver E, et al. Implementation of a pragmatic biomarker-driven algorithm to guide antibiotic use in the pediatric intensive care unit: the Optimizing Antibiotic Strategies in Sepsis (OASIS) II Study. J Pediatr Infect Dis Soc. 2020;9(1):36–43. doi: 10.1093/jpids/piy113
  37. Memar MY, Varshochi M, Shokouhi B, et al. Procalcitonin: The marker of pediatric bacterial infection. Biomed Pharmacother. 2017;96:936–943. doi: 10.1016/j.biopha.2017.11.149
  38. Westwood M, Ramaekers B, Whiting P, et al. Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2015;19(96):1-190. doi: 10.3310/hta19960
  39. Anugu NR, Khan S. Comparing the diagnostic accuracy of procalcitonin and c-reactive protein in neonatal sepsis: a systematic review. Cureus. 2021;13(11):e19485. doi: 10.7759/cureus.19485
  40. Gonsalves WI, Cornish N, Moore M, et al. Effects of volume and site of blood draw on blood culture results. J Clin Microbiol. 2009;47(11):3482–3485. doi: 10.1128/JCM.02107-08
  41. Freedman SB, Roosevelt GE. Utility of anaerobic blood cultures in a pediatric emergency department. Pediatr Emerg Care. 2004;20(7):433–436. doi: 10.1097/01.pec.0000132215.57976.99
  42. Woods-Hill CZ, Koontz DW, Voskertchian A, et al. Consensus recommendations for blood culture use in critically ill children using a modified Delphi approach. Pediatr Crit Care Med. 2021;22(9):774–784. doi: 10.1097/PCC.0000000000002749
  43. Popov DA, Nadtochey EA, Vostrikova TYu, Ovseenko ST. Accelerated techniques of pathogen identification from positive blood cultures by MALDI-TOF mass spectrometry. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(4):296–307. EDN: XDYONR
  44. Bjorklund A, Resch J, Slusher T. Pediatric shock review. Pediatr Rev. 2023;44(10):551–565. doi: 10.1542/pir.2022-005630
  45. NICE. Suspected sepsis: recognition, diagnosis and early management. London: National Institute for Health and Care Excellence (NICE); 2024. ISBN-13: 978-1-4731-5714-9
  46. Bedetti L, Miselli F, Minotti C, et al. Lumbar puncture and meningitis in infants with proven early- or late-onset sepsis: An Italian prospective multicenter observational study. Microorganisms. 2023;11(6):1546. doi: 10.3390/microorganisms11061546
  47. Bedetti L, Lugli L, Marrozzini L, et al. Safety and success of lumbar puncture in young infants: a prospective observational study. Front Pediatr. 2021;9:692652. doi: 10.3389/fped.2021.692652
  48. Singh Y, Villaescusa JU, da Cruz EM, et al. Recommendations for hemodynamic monitoring for critically ill children-expert consensus statement issued by the cardiovascular dynamics section of the European Society of Paediatric and Neonatal Intensive Care (ESPNIC). Crit Care. 2020;24(1):620. doi: 10.1186/s13054-020-03326-2.
  49. El-Nawawy AA, Abdelmohsen AM, Hassouna HM. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial. J Pediatr (Rio J). 2018;94(1):31–39. doi: 10.1016/j.jped.2017.02.005
  50. Miyagi SJ, Lam E, Tang Girdwood S. Partnering with clinical pharmacologists to improve medication use in children. J Pediatr. 2020;227:5–8. doi: 10.1016/j.jpeds.2020.03.061
  51. Loni R, Charki S, Kulkarni T, et al. Utility of a clinical pharmacist in the pediatric intensive care unit to identify and prevent medication errors. J Pediatr Crit Care. 2020;7(5):249–254. doi: 10.4103/JPCC.JPCC_68_20
  52. Blowey B, Resendiz KV, Grachen A, Srinivasan V. Prevention is better than cure: The vital role of the clinical pharmacist in the pediatric intensive care unit to prevent medication errors. J Pediatr Crit Care. 2020;7(5):235–236. doi: 10.4103/JPCC.JPCC_110_20
  53. Schlapbach LJ, Weiss SL, Wolf J. Reducing collateral damage from mandates for time to antibiotics in pediatric sepsis-primum non nocere. JAMA Pediatr. 2019;173(5):409–410. doi: 10.1001/jamapediatrics.2019.0174
  54. Tuuri RE, Gehrig MG, Busch CE, et al. «Beat the Shock Clock»: An interprofessional team improves pediatric septic shock care. Clin Pediatr (Phila). 2016;55(7):626–638. doi: 10.1177/0009922815601984
  55. Evans IVR, Phillips GS, Alpern ER, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320(4):358–367. doi: 10.1001/jama.2018.9071
  56. Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42(11):2409–2417. doi: 10.1097/CCM.0000000000000509
  57. Sukhorukova MV, Edelstein MV, Ivanchik NV, et al. Antimicrobial resistance of nosocomial Enterobacterales isolates in Russia: results of multicenter epidemiological study «MARATHON 2015–2016». Clinical Microbiology and Antimicrobial Chemotherapy. 2019;21(2):147–159. doi: 10.36488/cmac.2019.2.147-159 EDN: QDARVM
  58. Dou W, Liu X, An P, et al. Real-world safety profile of tetracyclines in children younger than 8 years old: an analysis of FAERS database and review of case report. Expert Opin Drug Saf. 2024;23(7):885–892. doi: 10.1080/14740338.2024.2359615
  59. Iosifidis E, Violaki A, Michalopoulou E, et al. Use of tigecycline in pediatric patients with infections predominantly due to extensively drug-resistant gram-negative bacteria. J Pediatric Infect Dis Soc. 2017;6(2):123–128. doi: 10.1093/jpids/piw009
  60. Pacifici GM. Clinical pharmacology of tigecycline in children. Ann Clin Pharmacol Toxicol. 2021;2:033–038.
  61. Beloborodov VB, Goloshchapov OV, Gusarov VG, et al. Diagnosis and antimicrobial therapy of infections caused by polyresistant microorganisms (updated 2022). Messenger of anesthesiology and resuscitation. 2022;19(2):84–114. doi: 10.21292/2078-5658-2022-19-2-84-114 EDN: VJUOGQ
  62. Godbout EJ, Pakyz AL, Markley JD, et al. Pediatric antimicrobial stewardship: State of the art. Curr Infect Dis Rep. 2018;20:39. doi: 10.1007/s11908-018-0644-7
  63. Weiss CH, Persell SD, Wunderink RG, Baker DW. Empiric antibiotic, mechanical ventilation, and central venous catheter duration as potential factors mediating the effect of a checklist prompting intervention on mortality: An exploratory analysis. BMC Health Serv Res. 2012;12:198. doi: 10.1186/1472-6963-12-198
  64. Weiss CH, Moazed F, McEvoy CA, et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: A single-site study. Am J Respir Crit Care Med. 2011;184(6):680–686. doi: 10.1164/rccm.201101-0037OC
  65. Lehrnbecher T, Robinson P, Fisher B, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35(18):2082–2094. doi: 10.1200/JCO.2016.71.7017
  66. Santhanam I, Sangareddi S, Venkataraman S, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24(10):647–655. doi: 10.1097/PEC.0b013e31818844cf
  67. Inwald DP, Canter R, Woolfall K, et al. Restricted fluid bolus volume in early septic shock: Results of the Fluids in Shock pilot trial. Arch Dis Child. 2019;104(5):426–431. doi: 10.1136/archdischild-2018-314924
  68. Sankar J, Javed MD, Sankar M, et al. Fluid bolus over 15-20 versus 5-10 minutes each in the first hour of resuscitation in children with septic shock: A randomized controlled trial. Pediatr Crit Care Med. 2017;18(10):e435–e445. doi: 10.1097/PCC.0000000000001269
  69. Arikan AAA, Zappitelli M, Goldstein SLL, et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13(3):253–258. doi: 10.1097/PCC.0b013e31822882a3
  70. Alobaidi R, Morgan C, Basu RK, et al. Association between fluid balance and outcomes in critically ill children: A systematic review and meta-analysis. JAMA Pediatr. 2018;172(3):257–268. doi: 10.1001/jamapediatrics.2017.4540
  71. Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112(4):793–799. doi: 10.1542/peds.112.4.793
  72. Samransamruajkit R, Uppala R, Pongsanon K, et al. Clinical outcomes after utilizing surviving sepsis campaign in children with septic shock and prognostic value of initial plasma NT-proBNP. Indian J Crit Care Med. 2014;18(2):70–76. doi: 10.4103/0972-5229.126075
  73. Chen J, Li X, Bai Z, et al. Association of fluid accumulation with clinical outcomes in critically ill children with severe sepsis. PLoS One. 2016;11(7):e0160093. doi: 10.1371/journal.pone.0160093
  74. Fernández-Sarmiento J, Sierra-Zuñiga MF, Salazar González MP, et al. Association between fluid overload and mortality in children with sepsis: A systematic review and meta-analysis. BMJ Paediatr Open. 2023;7(1):e002094. doi: 10.1136/bmjpo-2023-002094
  75. Emrath ET, Fortenberry JD, Travers C, et al. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis. Crit Care Med. 2017;45(7):1177–1183. doi: 10.1097/CCM.0000000000002365
  76. Weiss SL, Keele L, Balamuth F, et al. Crystalloid fluid choice and clinical outcomes in pediatric sepsis: a matched retrospective cohort study. J Pediatr. 2017;182:304–310.e10. doi: 10.1016/j.jpeds.2016.11.075
  77. Van de Voorde P, Turner NM, Djakow J, et al. European resuscitation council guidelines 2021: Paediatric Life Support. Resuscitation. 2021;161:327–387. doi: 10.1016/j.resuscitation.2021.02.015
  78. Lehr AR, Rached-D’astous S, Barrowman N, et al. Balanced versus unbalanced fluid in critically ill children: systematic review and meta-analysis. Pediatr Crit Care Med. 2022;23(3):181–191. doi: 10.1097/PCC.0000000000002890
  79. Sankar J, Muralidharan J, Lalitha AV, et al. Multiple electrolytes solution versus saline as bolus fluid for resuscitation in pediatric septic shock: A multicenter randomized clinical trial. Crit Care Med. 2023;51(11):1449–1460. doi: 10.1097/CCM.0000000000005952
  80. Maitland K, Kiguli S, Opoka RO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–2495. doi: 10.1056/NEJMoa1101549
  81. Qian S-y, Liu J. Relationship between serum albumin level and prognosis in children with sepsis, severe sepsis or septic shock. Zhonghua Er Ke Za Zhi. 2012;50(3):184–187.
  82. Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–1052. doi: 10.1001/archpedi.161.11.1048
  83. Pollack MM, Fields AI, Ruttimann UE. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit Care Med. 1985;13(6):454–459. doi: 10.1097/00003246-198506000-00002
  84. Ranjit S, Natraj R, Kandath SK, et al. Early norepinephrine decreases fluid and ventilatory requirements in pediatric vasodilatory septic shock. Indian J Crit Care Med. 2016;20(10):561–569. doi: 10.4103/0972-5229.192036
  85. Iramain R, Ortiz J, Jara A, et al. Fluid resuscitation and inotropic support in patients with septic shock treated in pediatric emergency department: an open-label trial. Cureus. 2022;14(10):e30029. doi: 10.7759/cureus.3002
  86. Karanvir, Gupta S, Kumar V. Practices of initiation of vasoactive drugs in relation to resuscitation fluids in children with septic shock: a prospective observational study. Indian J Crit Care Med. 2021;25(8):928–933. doi: 10.5005/jp-journals-10071-23954
  87. Ventura AM, Shieh HH, Bousso A, еt al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43(11):2292–2302. doi: 10.1097/CCM.0000000000001260
  88. Walsh BK, Smallwood CD. Pediatric oxygen therapy: A review and update. Respir Care. 2017;62(6):645–661. doi: 10.4187/respcare.05245
  89. Aubier M, Viires N, Syllie G, et al. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126(4):648–652. doi: 10.1164/arrd.1982.126.4.648
  90. Cheifetz IM. Invasive and noninvasive pediatric mechanical ventilation. Respir Care. 2003;48(4):442–453.
  91. Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92(9):1382–1400. doi: 10.1016/j.mayocp.2017.05.004
  92. Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal alveolar dead space fraction and mortality in pediatric acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13(1):11–15. doi: 10.1097/PCC.0b013e3182192c42
  93. Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115–128. doi: 10.1016/S2213-2600(18)30344-8
  94. Jones P, Dauger S, Denjoy I, et al. The effect of atropine on rhythm and conduction disturbances during 322 critical care intubations. Pediatr Crit Care Med. 2013;14(9):e289–e297. doi: 10.1097/PCC.0b013e31828a8624
  95. Jabre P, Avenel A, Combes X, et al. Morbidity related to emergency endotracheal intubation–a substudy of the KETAmine SEDation trial. Resuscitation. 2011;82(5):517–522. doi: 10.1016/j.resuscitation.2011.01.015
  96. Abadesso C, Nunes P, Silvestre C, et al. Non-invasive ventilation in acute respiratory failure in children. Pediatr Rep. 2012;4(2):e16. doi: 10.4081/pr.2012.e16
  97. Piastra M, De Luca D, Pietrini D, et al. Noninvasive pressure support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–1427. doi: 10.1007/s00134-009-1558-5
  98. Piastra M, De Luca D, Marzano L, et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37:1510–1516. doi: 10.1007/s00134-011-2308-z
  99. Emeriaud G, López-Fernández YM, Iyer NP, et al. Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) Group on behalf of the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2). Pediatr Crit Care Med. 2023;24(2):143–168. doi: 10.1097/PCC.0000000000003147.
  100. Khemani RG, Smith LS, Zimmerman JJ, et al. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5s):S23–40. doi: 10.1097/PCC.0000000000000432
  101. Kneyber MCJ., de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764–1780. doi: 10.1007/s00134-017-4920-z
  102. Aleksandrovich YuS, Pshenisnov KV. Respiratory support for critical conditions in pediatrics and neonatology (a guide for doctors). Moscow: GEOTAR-Media; 2020. 272 p. (In Russ.) doi: 10.33029/9704-5418-3-IVL-2020-1-272
  103. Newth CJL, Rachman B, Patel N, Hammer J. The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr. 2004;144(3):333–337. doi: 10.1016/j.jpeds.2003.12.018
  104. Weiss M, Dullenkopf A, Fischer JE, et al. European Paediatric Endotracheal Intubation Study Group: Prospective randomized controlled multi-centre trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103(6):867–873. doi: 10.1093/bja/aep290
  105. Topjian AA, Raymond TT, Atkins D, et al. Part 4: Pediatric basic and advanced life support: 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2020;142(16):S469–S523. doi: 10.1161/CIR.0000000000000918
  106. Abdelsalam M, Cheifetz IM. Goal-directed therapy for severely hypoxic patients with acute respiratory distress syndrome: permissive hypoxemia. Respir Care. 2010;55(11):1483–1490.
  107. Randolph AG Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med. 2009;37(8):2448–2454. doi: 10.1097/CCM.0b013e3181aee5dd
  108. Santini A, Protti A, Langer T, et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Int Care Med Exp. 2015;3:17. doi: 10.1186/s40635-015-0055-0
  109. Rudolph MW, Kneyber MCJ, Asaro LA, et al. Early neuromuscular blockade in moderate-to-severe pediatric acute respiratory distress syndrome. Crit Care Med. 2022;50(5):445–e457. doi: 10.1097/CCM.0000000000005426
  110. Mikhailov TA, Kuhn EM, Manzi J, et al. Early enteral nutrition is associated with lower mortality in critically ill children. JPEN J Parenter Enteral Nutr. 2014;38(4):459–466. doi: 10.1177/0148607113517903
  111. Prakash V, Parameswaran N, Biswal N. Early versus late enteral feeding in critically ill children: a randomized controlled trial. Int Care Med. 2016;42:481–482. doi: 10.1007/s00134-015-4176-4
  112. Mehta NM, Bechard LJ, Zurakowski D, et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206. doi: 10.3945/ajcn.114.104893
  113. Chaparro CJ, Depeyre JL, Longchamp D, et al. How much protein and energy are needed to equilibrate nitrogen and energy balances in ventilated critically ill children? Clin Nutr. 2016;35(2):460–467. doi: 10.1016/j.clnu.2015.03.015
  114. Manaf AZ, Kassim N, Hamzaid NH, et al. Delivery of enteral nutrition for critically ill children. Nutr Diet. 2013;70:120–125. doi: 10.1111/1747-0080.12007
  115. Bagci S, Keles E, Girgin F, et al. Early initiated feeding versus early reached target enteral nutrition in critically ill children: an observational study in pediatric intensive care units in Turkey. J Paediatr Child Health. 2018;54(5):480–486. doi: 10.1111/jpc.13810
  116. Mikhailov TA, Gertz SJ, Kuhn EM, et al. Early enteral nutrition is associated with signifcantly lower hospital charges in critically ill children. JPEN J Parenter Enter Nutr. 2018;42(5):920–925. doi: 10.1002/jpen.1025
  117. Carpenito K-R, Prusinski R, Kirchner K, et al. Results of a feeding protocol in patients undergoing the hybrid procedure. Pediatr Cardiol. 2016;37:852–859. doi: 10.1007/s00246-016-1359-x
  118. Lеkmanov AU, Erpuljova JV. Early enteral nutrition in critical conditions in children. Ann Crit Care. 2012;3:53–55.
  119. Wong JJ-M, Han WM, Sultana R, et al. Nutrition delivery affects outcomes in pediatric acute respiratory distress syndrome. JPEN J Parenter Enteral Nutr. 2017;41(6):1007–1013. doi: 10.1177/0148607116637937
  120. Rajalakshmi I, Arun B. What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med. 2019;7(19):510–518. doi: 10.21037/atm.2019.08.25
  121. Panchal AK, Manzi J, Connolly S, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enter Nutr. 2016;40(2):236–241. doi: 10.1177/0148607114546533
  122. King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28(5):334–338. doi: 10.1177/0148607104028005334
  123. López-Herce J, Santiago MJ, Sánchez C, et al. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62:395–400. doi: 10.1038/sj.ejcn.1602710
  124. Mehta NM. Feeding the gut during critical illness – it is about time. JPEN J Parenter Enteral Nutr. 2014;38(4):410–414. doi: 10.1177/0148607114522489
  125. Shmakov AN, Aleksandrovich YuS, Stepanenko SM. Protocol. Nutrition therapy of critically ill children. Anesthesiology-resuscitation. 2017;62(1):14–23. doi: 10.18821/0201-7563-2017-62-1-14-23
  126. Meyer R, Harrison S, Sargent S, et al. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22(5):428–436. doi: 10.1111/j.1365-277X.2009.00994.x
  127. Petrillo-Albarano T, Pettignano R, Asfaw M, et al. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med. 2006;7(4):340–344. doi: 10.1097/01.PCC.0000225371.10446.8F
  128. Yoshimura S, Miyazu M, Yoshizawa S, et al. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth Intensive Care. 2015;43(5):587–593. doi: 10.1177/0310057X1504300506
  129. Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr Crit Care Med. 2014;15(7):583–589. doi: 10.1097/PCC.0000000000000179
  130. López-Herce J, Mencía S, Sánchez C, et al. Postpyloric enteral nutrition in the critically ill child with shock: a prospective observational study. Nutr J. 2008;7:6. doi: 10.1186/1475-2891-7-6
  131. Sonmez DD, Yildiz S. Effect of two different feeding methods on preventing ventilator associated pneumonia in the pediatric intensive care unit (PICU): a randomised controlled study. Aust Crit Care. 2016;29(3):139–145. doi: 10.1016/j.aucc.2015.11.001
  132. Lеkmanov AU, Ryzhov EA, Erpuljova JV et al. The experience of enteral feeding with nasojejunal tube in children in critical state. Anesthesiology-resuscitation. 2012;(1):41–43.
  133. Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126(3):872–878. doi: 10.1378/chest.126.3.872
  134. Kamat P, Favaloro-Sabatier J, Rogers K, Stockwell J. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med. 2008;9(3):299–303. doi: 10.1097/PCC.0b013e318172d500
  135. Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1111–1122. doi: 10.1056/NEJMoa1514762
  136. Koletzko B, Bhatia J, Bhutta Z, et al editors. Pediatric nutrition in practice. 2nd edit. revis. Basel: Karger; 2015. doi: 10.1159/isbn.978-3-318-02691-7
  137. Koletzko B, Goulet O, Hunt J, et al. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr. 2005;41(S2):S1–S4. doi: 10.1002/j.1536-4801.2005.tb00011.x
  138. Koletzko B, Goulet O, Sobotka L, ed. Nutritional support in infants, children and adolescents. In: Basics in clinical nutrition. 4th edit. Prague: Gelén; 2011. P. 625–653.
  139. Ista E, Joosten K. Nutritional assessment and enteral support of critically ill children. Crit Care Nurs Clin North Am. 2005;17(4):385–393. doi: 10.1016/j.ccell.2005.07.011
  140. de Menezes FS, Leite HP, Koch Nogueira PC. What are the factors that influence the attainment of satisfactory energy intake in pediatric intensive care unit patients receiving enteral or parenteral nutrition? Nutrition. 2013;29(1):76–80. doi: 10.1016/j.nut.2012.04.003
  141. Nilesh MM. Parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1190–1192. doi: 10.1056/NEJMe1601140
  142. Lekmanov AU, Erpuleva YuV, Suvorov SG. Practice of clinical nutrition in pediatric intensive care units: results of the «NUTRIPED-2015» research. Russian journal of Anаеsthesiology and Reanimatology. 2016;61(5):376–380. doi: 10.18821/0201-7563-2016-61-5-376-380
  143. Goulet O, Jochum F, Koletzko B. Early or late parenteral nutrition in critically ill children: practical implications of the PEPaNIC trial. Ann Nutr Metab. 2017;70(1):34–38. doi: 10.1159/000455336
  144. Koletzko B, Goulet O, Jochum F, Shamir R. Use of parenteral nutrition in the pediatric ICU: should we panic because of PEPaNIC? Curr Opin Clin Nutr Metab Care. 2017;20(3):201–203. doi: 10.1097/MCO.0000000000000371
  145. Peters MJ, Argent A, Festa M, et al. The intensive care medicine clinical research agenda in paediatrics. Int Care Med. 2017;43(9):1210–1224. doi: 10.1007/s00134-017-4729-9
  146. Mehta NM, Skillman HE, Irving SY, et al. Goday and carol braunschweig guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017;41(5):706–742. doi: 10.1177/0148607117711387
  147. Sutherland SM, Goldstein SL, Alexander SR. The prospective pediatric continuous renal replacement therapy (ppCRRT) registry: a critical appraisal. Pediatr Nephrol. 2014;29(11):2069–2076. doi: 10.1007/s00467-013-2594-5
  148. Guzzo I, de Galasso L, Mir S, et al. Acute dialysis in children: results of a European survey. J Nephrol. 2019;32(3):445–451. doi: 10.1007/s40620-019-00606-1
  149. Tomar A, Kumar V, Saha A. Peritoneal dialysis in children with sepsis-associated AKI (SA-AKI): an experience in a low- to middle-income country. Paediatr Int Child Health. 2021;41(2):137–144. doi: 10.1080/20469047.2021.1874201
  150. Nourse P, Cullis B, Finkelstein F, et al. ISPD guidelines for peritoneal dialysis in acute kidney injury: 2020 Update (paediatrics). Perit Dial Int. 2021;41(2):139–157. doi: 10.1177/0896860820982120
  151. Menon S, Krallman KA, Arikan AA, et al. Worldwide Exploration of Renal Replacement Outcomes Collaborative in Kidney Disease (WE-ROCK). Kidney Int Rep. 2024;9(3):732. doi: 10.1016/j.ekir.2024.01.022
  152. Menon S, Broderick J, Munshi R, et al. Kidney support in children using an ultrafiltration device: a multicenter, retrospective study. Clin J Am Soc Nephrol. 2019;14(10):1432–1440. doi: 10.2215/CJN.03240319
  153. Basu B, Sinha Mahapatra TK, Roy B, Schaefer F. Efficacy and outcomes of continuous peritoneal dialysis versus daily intermittent hemodialysis in pediatric acute kidney injury. Pediatr Nephrol. 2016;31(10):1681–1689. doi: 10.1007/s00467-016-3412-7
  154. Chanchlani R, Nash DM, McArthur E, et al. Secular trends in incidence, modality and mortality with dialysis receiving AKI in children in Ontario: A population-based cohort study. Clin J Am Soc Nephrol. 2019;14(9):1288–1296. doi: 10.2215/CJN.08250718
  155. Hogan J, Ranchin B, Fila M, et al. Effect of center practices on the choice of the first dialysis modality for children and young adults. Pediatr Nephrol. 2017;32(4):659–667. doi: 10.1007/s00467-016-3538-7
  156. Sutherland SM, Ji J, Sheikhi FH, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–1669. doi: 10.2215/CJN.00270113
  157. Rustagi RS, Arora K, Das RR, et al. Incidence, risk factors and outcome of acute kidney injury in critically ill children — a developing country perspective. Paediatr Int Child Health. 2017;37(1):35–41. doi: 10.1080/20469047.2015.1120409
  158. Lameire N, Van Biesen W, Vanholder R. Epidemiology of acute kidney injury in children worldwide, including developing countries. Pediatr Nephrol. 2017;32(8):1301–1314. doi: 10.1007/s00467-016-3433-2
  159. Goldstein SL, Akcan-Arikan A, Alobaidi R, et al. Consensus-based recommendations on priority activities to address acute kidney injury in children: A modified delphi consensus statement. JAMA Netw Open. 2022;5(9):e2229442. doi: 10.1001/jamanetworkopen.2022.29442
  160. França JHV, Da Silva TPD, Maia MP, et al. Epidemiological profile of pediatric patients with acute kidney injury: A literature review. LUMEN ET VIRTUS, [S. l.]. 2024;15(38):329–338. doi: 10.56238/levv15n38-019
  161. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–325. doi: 10.1053/j.ajkd.2009.10.048
  162. Lintz VC, Vieira RA, de Lima Carioca F, et al. Fluid accumulation in critically ill children: a systematic review and meta-analysis. EClinicalMedicine. 2024;74:102714. doi: 10.1016/j.eclinm.2024.102714
  163. Snow TAC, Littlewood S, Corredor C, et al. Effect of extracorporeal blood purification on mortality in sepsis: a meta-analysis and trial sequential analysis. Blood Purif. 2021;50(4-5):462–472. doi: 10.1159/000510982
  164. Fayad AII, Buamscha DG, Ciapponi A. Timing of renal replacement therapy initiation for acute kidney injury. Cochrane Database Syst Rev. 2018;12(12):CD010612. doi: 10.1002/14651858.CD010612.pub2
  165. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184. doi: 10.1159/000339789
  166. Lobzin YuV, Muzurov AL, Serednyakov KV et al. Sorption and dialysis technologies of extracorporeal blood purification in pediatric intensive care. Russian Journal of Anesthesiology and Reanimatology. 2020;(5):56-62. doi: 10.17116/anaesthesiology202005156 EDN: KQUEIT
  167. Kawai Y, Cornell TT, Cooley EG, et al. Therapeutic plasma exchange may improve hemodynamics and organ failure among children with sepsis-induced multiple organ dysfunction syndrome receiving extracorporeal life support. Pediatr Crit Care Med. 2015;16(4):366–374. doi: 10.1097/PCC.0000000000000351
  168. Stahl K, Bikker R, Seeliger B, et al. Effect of therapeutic plasma exchange on immunoglobulin deficiency in early and severe septic shock. J Intensive Care Med. 2021;36(12):1491–1497. doi: 10.1177/0885066620965169
  169. Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18(6):699. doi: 10.1186/s13054-014-0699-2
  170. Putzu A, Schorer R, Lopez-Delgado JC, et al. Blood purification and mortality in sepsis and septic shock: a systematic review and meta-analysis of randomized trials. Anesthesiology. 2019;131(3):580–593. doi: 10.1097/ALN.0000000000002820
  171. Long EJ, Taylor A, Delzoppo C, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc. 2013;15(3):198–204. doi: 10.1016/S1441-2772(23)01796-9
  172. Keith PD, Wells AH, Hodges J, et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Crit Care. 2020;24(1):518. doi: 10.1186/s13054-020-03241-6
  173. Knaup H, Stahl K, Schmidt BMW, et al. Early therapeutic plasma exchange in septic shock: a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care. 2018;22(1):285. doi: 10.1186/s13054-018-2220-9
  174. Guo XH, Sun YF, Han SZ, et al. Continuous blood purification in children with severe sepsis. J Biol Regul Homeost Agents. 2017;31(2):389–394.
  175. Yarustovsky MB, Abramyan MV, Soldatkina AO et al. Preliminary report regarding the use of LPS-adsorption in complex intensive therapy for children with gram-negative sepsis after heart surgery. Russian Journal of Anaesthesiology and Reanimatology. 2017;62(5):376–381. doi: 10.18821/0201-7563-2017-62-5-376-381 EDN: ZWTPSF
  176. Ankawi G, Neri M, Zhang J, et al. Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care. 2018;22(1):262. doi: 10.1186/s13054-018-2181-z
  177. Saetang P, Samransamruajkit R, Singjam K, et al. Polymyxin B hemoperfusion in pediatric septic shock: single-center observational case series. Pediatr Crit Care Med. 2022;23(8):e386–e391. doi: 10.1097/PCC.0000000000002969
  178. Ying J, Cai X, Lu G, Chen W. The use of membranes (ST-100, oXiris, and M60) for continuous renal replacement therapy in a child with sepsis. Case Rep Crit Care. 2023;2023:2000781. doi: 10.1155/2023/2000781
  179. Morin L, Charbel R, Cousin VL, et al. Blood purification with oXiris© in critically ill children with vasoplegic shock. Blood Purif. 2023;52(6):541–548. doi: 10.1159/000530147
  180. Aleksandrovich YuS., Serednyakov KV, Rybyanov VV, et al. Prediction of septic shock outcome in children requiring extracorporeal hemocorrection. Russian Journal of Anesthesiology and Reanimatology. 2022;(6):44-51. doi: 10.17116/anaesthesiology202206144 EDN: BEJTGS
  181. Maede Y, Ibara S, Tokuhisa T, et al. Polymyxin B-immobilized fiber column direct hemoperfusion and continuous hemodiafiltration in premature neonates with systemic inflammatory response syndrome. Pediatr Int. 2016;58(11):1176–1182. doi: 10.1111/ped.13006
  182. Nishizaki N, Hara T, Obinata K, et al. Clinical effects and outcomes after polymyxin b-immobilized fiber column direct hemoperfusion treatment for septic shock in preterm neonates. Pediatr Crit Care Med. 2020;21(2):156–163. doi: 10.1097/PCC.0000000000002132
  183. Chaudhuri D, Nei AM, Rochwerg B, et al. 2024 Focused Update: guidelines on use of corticosteroids in sepsis, acute respiratory distress syndrome, and community-acquired pneumonia. Crit Care Med. 2024;52(5):e219–e233. doi: 10.1097/CCM.0000000000006172
  184. Agus MSD, Wypij D, Hirshberg EL, et al. Tight glycemic control in critically ill children. N Engl J Med. 2017;376(8):729-741. doi: 10.1056/NEJMoa1612348
  185. Macrae D, Grieve R, Allen E, et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370(2):107–118. doi: 10.1056/NEJMoa1302564
  186. Dotson B, Larabell P, Patel JU, et al. Calcium administration is associated with adverse outcomes in critically ill patients receiving parenteral nutrition: results from a natural experiment created by a calcium gluconate shortage. Pharmacotherapy. 2016;36(11):1185–1190. doi: 10.1002/phar.1849
  187. Barbosa Dias CR, Leite HP, Koch Nogueira PC, de Carvalho WB. Ionized hypocalcemia is an early event and is associated with organ dysfunction in children admitted to the intensive care unit. J Crit Care. 2013;28(5):810–815. doi: 10.1016/j.jcrc.2013.03.019
  188. Karam O, Tucci M, Ducruet T, et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12(5):512–518. doi: 10.1097/PCC.0b013e3181fe344b
  189. Hébert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–417. doi: 10.1056/NEJM199902113400601
  190. Yang L, Stanworth S, Hopewell S, et al. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion. 2012;52(8):1673–1686. doi: 10.1111/j.1537-2995.2011.03515.x
  191. Karam O, Lacroix J, Robitaille N, et al. Association between plasma transfusions and clinical outcome in critically ill children: a prospective observational study. Vox Sang. 2013;104(4):342–349. doi: 10.1111/vox.12009
  192. Du Pont-Thibodeau G, Tucci M, Robitaille N, et al. Platelet transfusions in pediatric intensive care. Pediatr Crit Care Med. 2016;17(9):e420–e429. doi: 10.1097/PCC.0000000000000879
  193. Kreymann KG, de Heer G, Nierhaus A, Kluge S. Use of polyclonal immunoglobulins as adjunctive therapy for sepsis or septic shock. Crit Care Med. 2007;35(12):2677–2685. doi: 10.1097/00003246-200712000-00001
  194. Kakoullis L, Pantzaris N-D, Platanaki C, et al. The use of IgM-enriched immunoglobulin in adult patients with sepsis. J Crit Care. 2018;47:30–35. doi: 10.1016/j.jcrc.2018.06.005
  195. Cui J, Wei X, Lv H, et al. The clinical efficacy of intravenous IgM-enriched immunoglobulin (pentaglobin) in sepsis or septic shock: a meta-analysis with trial sequential analysis. Ann Intensive Care. 2019;9(1):27. doi: 10.1186/s13613-019-0501-3
  196. Aukrust P, Frøland SS, Liabakk NB, et al. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–2143. doi: 10.1182/blood.V84.7.2136.2136
  197. Rieben R, Roos A, Muizert Y, et al. Immunoglobulin M-enriched human intravenous immunoglobulin prevents complement activation in vitro and in vivo in a rat model of acute inflammation. Blood. 1999;93(3):942–951. doi: 10.1182/blood.V93.3.942
  198. Bermejo-Martín JF, Rodriguez-Fernandez A, Herrán-Monge R, et al. Immunoglobulins IgG1, IgM and IgA: a synergistic team influencing survival in sepsis. J Intern Med. 2014;276(4):404–412. doi: 10.1111/joim.12265
  199. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–268. doi: 10.1016/S1473-3099(13)70001
  200. Alejandria MM, Lansang MA, Dans LF, Mantaring JB III. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013;9:CD001090. doi: 10.1002/14651858.CD001090.pub2
  201. El-Nawawy A, El-Kinany H, Hamdy El-Sayed M, Boshra N. Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: A prospective study in a pediatric intensive care unit. J Trop Pediatr. 2005;51(5):271–278. doi: 10.1093/tropej/fmi011
  202. Beloborodov NV, Popov DA, Shatalov KV, et al. Replacement immunotherapy under the control of procalcitonin test — a new approach to prevent the manifestation of infection in the postoperative period in children with complex congenital heart defects. Childhood heart and vascular diseases. 2005;3:62–68.
  203. Popov D, Yaroustovsky M, Lobacheva G. Prevention of infectious complications after heart surgery in children: procalcitonin-guided strategy. Kardiochir Torakochirurgia Pol. 2014;11(2):140–44. doi: 10.5114/kitp.2014.43840
  204. Kola E, Çelaj E, Bakalli I, et al. Efficacy of an IgM preparation in the treatment of patients with sepsis: a double-blind randomized clinical trial in a pediatric intensive care unit (Original research). SEEJPH. 2014;40(1):278. doi: 10.12908/SEEJPH2014-04
  205. Abdullayev E, Kilic O, Bozan G, et al. Clinical, laboratory features and prognosis of children receiving IgM-enriched immunoglobulin (3 days vs. 5 days) as adjuvant treatment for serious infectious disease in pediatric intensive care unit: a retrospective single-center experience (PIGMENT study). Hum Vaccin Immunother. 2020;16(8):1997–2002. doi: 10.1080/21645515.2019.1711298
  206. Berlot G, Vassallo MC, Busetto N, et al. Relationship between the timing of administration of IgM and IgA enriched immunoglobulins in patients with severe sepsis and septic shock and the outcome: a retrospective analysis. J Crit Care. 2012;27(2):167–171. doi: 10.1016/j.jcrc.2011.05.012
  207. De Rosa FG, Corcione S, Tascini C, et al. A position paper on IgM-enriched intravenous immunoglobulin adjunctive therapy in severe acute bacterial infections: the TO-PIRO SCORE proposal. New Microbiol. 2019;42(3):176–180.
  208. Ponnarmeni S, Angurana SK, Singhi S, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatr Int Child Health. 2016;36(1):15–21. doi: 10.1080/20469047.2015.1109274
  209. Reveiz L, Guerrero-Lozano R, Camacho A, et al. Stress ulcer, gastritis, and gastrointestinal bleeding prophylaxis in critically ill pediatric patients: A systematic review. Pediatr Crit Care Med. 2010;11(1):124–132. doi: 10.1097/PCC.0b013e3181b80e70
  210. Jimenez J, Drees M, Loveridge-Lenza B, et al. Exposure to gastric acid-suppression therapy is associated with health care- and community-associated Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;61(2):208–211. doi: 10.1097/MPG.0000000000000790
  211. Cook D, Heyland D, Griffith L, et al. Risk factors for clinically important upper gastrointestinal bleeding in patients requiring mechanical ventilation. Canadian Critical Care Trials Group. Crit Care Med. 1999;27(12):2812–2817. doi: 10.1097/00003246-199912000-00034
  212. Duerksen DR. Stress-related mucosal disease in critically ill patients. Best Pract Res Clin Gastroenterol. 2003;17(3):327–344. doi: 10.1016/S1521-6918(03)00028-3
  213. Massicotte P, Julian JA, Gent M, et al. An open-label randomized controlled trial of low molecular weight heparin for the prevention of central venous line-related thrombotic complications in children: The PROTEKT trial. Thromb Res. 2003;109(2-3):101–108. doi: 10.1016/S0049-3848(03)00099-9
  214. Lagunes L, Encina B, Ramirez-Estrada S. Current understanding in source control management in septic shock patients: a review. Ann Transl Med. 2016;4(17):330. doi: 10.21037/atm.2016.09.02
  215. Fustes-Morales A, Gutierrez-Castrellon P, Duran-Mckinster C, et al. Necrotizing fasciitis: Report of 39 pediatric cases. JAMA Dermatol. 2002;138(7):893–899. doi: 10.1001/archderm.138.7.893
  216. Endorf FW, Garrison MM, Klein MB, et al. Characteristics, therapies, and outcome of children with necrotizing soft tissue infections. Pediatr Infect Dis J. 2012;31(3):221–223. doi: 10.1097/INF.0b013e3182456f02
  217. Vasudevan C, Oddie SJ, McGuire W. Early removal versus expectant management of central venous catheters in neonates with bloodstream infection. Cochrane Database Syst Rev. 2016;4(4):CD008436. doi: 10.1002/14651858
  218. Rodriguez D, Park BJ, Almirante B, et al. Barcelona Candidemia Project Study Group: Impact of early central venous catheter removal on outcome in patients with candidaemia. Clin Microbiol Infect. 2007;13(8):788–793. doi: 10.1111/j.1469-0691.2007.01758.x
  219. Epifanov VA, Yushchuk ND, Epifanov AV. Medical and social rehabilitation after infectious diseases. Moscow: GEOTAR-media; 2020. 560 p. (In Russ.) doi: 10.33029/9704-4843-4-MR-2-2020-1-736
  220. Karpov IA, Gorbich YuL, Kulagin AE, et al. Sepsis: diagnosis, principles of antimicrobial and supportive therapy (teaching aids). Minsk: BSMU, 2019. 28 p. (In Russ.)
  221. Seymour CW, Wiersinga WJ, editors. Handbook of sepsis. Springer; 2018. 268 p. doi: 10.1007/978-3-319-73506-1
  222. Odetola FO, Gebremariam A. Transfer hospitalizations for pediatric severe sepsis or septic shock: resource use and outcomes. BMC Pediatr. 2019;19(1):196. doi: 10.1186/s12887-019-1577-5
  223. Ames SG, Horvat CM, Zaritsky A, Carcillo JA. The path to great pediatric septic shock outcomes. Crit Care. 2018;22(1):224. doi: 10.1186/s13054-018-2147-1
  224. Lin JC, Spinella PC, Fitzgerald JC, et al. New or progressive multiple organ dysfunction syndrome in pediatric severe sepsis: a sepsis phenotype with higher morbidity and mortality. Pediatr Crit Care Med. 2017;18(1):8–16. doi: 10.1097/PCC.0000000000000978
  225. Workman JK, Ames SG, Reeder RW, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17(10):e451–e458. doi: 10.1097/PCC.0000000000000906
  226. Balamuth F, Scott HF, Weiss SL, et al. Validation of the pediatric sequential organ failure assessment score and evaluation of third international consensus definitions for sepsis and septic shock definitions in the pediatric emergency department. JAMA Pediatr. 2022;176(7):672–678. doi: 10.1001/jamapediatrics.2022.1301
  227. Shah S, Deshmukh CT, Tullu MS. The predictors of outcome and progression of pediatric sepsis and septic shock: A prospective observational study from Western India. J Postgrad Med. 2020;66(2):67–72. doi: 10.4103/jpgm.JPGM_171_19
  228. Ames SG, Davis BS, Angus DC et al. Hospital variation in risk-adjusted pediatric sepsis mortality. Pediatr Crit Care Med. 2018;19(5):390–396. doi: 10.1097/PCC.0000000000001502
  229. Gilholm P, Gibbons K, Lister P, et al. Validation of a paediatric sepsis screening tool to identify children with sepsis in the emergency department: a statewide prospective cohort study in Queensland, Australia. BMJ Open. 2023;13(1):e061431. doi: 10.1136/bmjopen-2022-061431
  230. Peters C, Murthy S, Brant R, et al. Mortality risk using a pediatric quick sequential (sepsis-related) organ failure assessment varies with vital sign thresholds. Pediatr Crit Care Med. 2018;19(8):e394–e402. doi: 10.1097/PCC.0000000000001598
  231. Paul R, Niedner M, Brilli R, et al. Metric development for the multicenter improving pediatric sepsis outcomes (IPSO) collaborative. Pediatrics. 2021;147(5):e2020017889. doi: 10.1542/peds.2020-017889

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).