Technologies for stimulation of the reparative processes in children with knee osteochondritis dissecans: A review

Cover Page

Cite item

Full Text

Abstract

Dissecting osteochondritis of the knee joint, Koenig’s disease is a disease of the knee joint that result in articular surface and osteoarthritis congruence. The disease incidence reaches 15% in the pathological knee joint structure in children. The comparative effectiveness of various treatment methods for children with Koenig’s disease, from conservative therapy to orthobiological technologies, is a topical subject of discussion among specialists.

The effectiveness of modern treatment methods for children with Koenig’s disease has been evaluated and is the leading trend in the use of biotechnology for further experimental and clinical studies.

The literature search was conducted in the electronic databases of PubMed, Web of Science, Scopus, MEDLINE, eLibrary, RSCI, and Cyberleninka, whereas 2300 references were analyzed, 283 articles were viewed, and 90 publications on orthopedics and biotechnology were selected for the review.

Indications for conservative treatment in children with Koenig’s disease are currently limited to stages I–II of the process. Surgical methods occupy a dominant position when pain relief and pathological focus regeneration stimulation are necessary. However, the long-term results of therapy indicate the replacement of the necrosis zone with coarse fibrous connective tissue, which is significantly inferior to hyaline cartilage in terms of biomechanical characteristics, which determines a high risk of developing osteoarthritis. The actively developing direction of orthobiology allows the use of a patient’s tissues to activate the processes of reparative regeneration with the relief of clinical manifestations and favorable immediate results.

The focus of attention of researchers has shifted to the plane of orthobiological technologies following the established trends in regenerative medicine development, which provide a high proportion of favorable immediate interventional results. However, the limited number of publications and the lack of long-term results of therapy do not meet the criteria for demonstrative effectiveness of technologies.

About the authors

Elena G. Pligina

Veltishchev Research Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University; G.N. Speransky Children’s Hospital

Author for correspondence.
Email: elenapligina@mail.ru
ORCID iD: 0000-0002-8508-7349
SPIN-code: 5309-0417

Cand. Sci. Med., Senior Rresearcher, Orthopedic traumatologist

Russian Federation, Moscow; Moscow

Leila G. Kerimova

G.N. Speransky Children’s Hospital

Email: Leila.kerimova@yahoo.com
ORCID iD: 0000-0002-4399-7002
SPIN-code: 8245-1046

Orthopedic traumatologist

Russian Federation, Moscow

Igor A. Burkin

G.N. Speransky Children’s Hospital

Email: iburkin@mail.ru
ORCID iD: 0000-0003-0328-1963
SPIN-code: 5524-0651

Cand. Sci. (Med.), Head of the Department of Traumatology

Russian Federation, Moscow

Igor S. Kovalyunas

Veltishchev Research Clinical Institute for Pediatrics and Pediatric Surgery, Pirogov Russian National Research Medical University; G.N. Speransky Children’s Hospital

Email: igorkovalyunas@mail.ru
ORCID iD: 0000-0002-9411-4062
SPIN-code: 1105-6393

Researcher, Pediatric Surgeon

Russian Federation, Moscow; Moscow

References

  1. Bryanskaya AI, Baindurashvili AG, Arkhipov AA, et al. Arthroscopic treatment of knee joint diseases in children. Orthopedics, Traumatology and Reconstructive Surgery of Childhood. 2014;2(3):18–23. (In Russ.) doi: 10.17816/PTORS2318-23
  2. Jones MH, Williams AM. Osteochondritis dissecans of the knee: a practical guide for surgeons. Bone Joint J. 2016;98-B(6):723–729. doi: 10.1302/0301-620X.98B6.36816
  3. Yellin JL, Gans I, Carey JL, et al. The Surgical Management of Osteochondritis Dissecans of the Knee in the Skeletally Immature: A Survey of the Pediatric Orthopaedic Society of North America (POSNA) Membership. J Pediatr Orthop. 2017;37(7):491–499. doi: 10.1097/BPO.0000000000000696
  4. Heyworth BE, Edmonds EW, Murnaghan ML, et al. Drilling techniques for osteochondritis dissecans. Clin Sports Med. 2014;33(2):305–312. doi: 10.1016/j.csm.2013.11.007
  5. Nissen CW, Albright JC, Anderson CN, et al. Descriptive Epidemiology from the Research in Osteochondritis Dissecans of the Knee (ROCK) Prospective Cohort. Am J Sports Med. 2022;50(1):118–1127. doi: 10.1177/03635465211057103
  6. Cruz AI Jr, Shea KG, Ganley TJ. Pediatric Knee Osteochondritis Dissecans Lesions. Orthop Clin North Am. 2016;47(4):763–775. doi: 10.1016/j.ocl.2016.05.001.
  7. Mestriner LA. osteochondritis dissecans of the knee: diagnosis and treatment. Rev Bras Ortop. 2015;47(5):553–562. doi: 10.1016/S2255-4971(15)30003-3
  8. Bruns J, Werner M, Habermann C. Osteochondritis Dissecans: Etiology, Pathology, and Imaging with a Special Focus on the Knee Joint. Cartilage. 2018;9(4):346–362. doi: 10.1177/1947603517715736
  9. Zanon G, Di Vico G, Marullo M. Osteochondritis dissecans of the knee. Joints. 2014. Vol. 2, No. 1. P. 29–36.
  10. Pei M, Li JT, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater. 2011;22:333–343; discussion 343. doi: 10.22203/ecm.v022a25
  11. Bauer KL. Osteochondral Injuries of the Knee in Pediatric Patients. J Knee Surg. 2018;31(5):382–391. doi: 10.1055/s-0038-1625956
  12. Wall E, Von Stein D. Juvenile osteochondritis dissecans. Orthop Clin North Am. 2003;34(3):341–353. doi: 10.1016/s0030-5898(03)00038-5
  13. Masquijo J, Kothari A. Juvenile osteochondritis dissecans (JOCD) of the knee: current concepts review. EFORT Open Rev. 2019;4(5):201–212. doi: 10.1302/2058-5241.4.180079
  14. Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34(7):1181–1191. doi: 10.1177/0363546506290127
  15. Sergeev SV, Akinfiev AV, Petrov AG, et al. Secans of a knee joint in children and adolescents. Bulletin of the Chuvash University. 2012;(3):481–485. (In Russ.)
  16. Baindurashvili AG, Sergeev SV, Moskalenko AV, et al. Results of early surgical treatment of dissecting osteochondritis of the knee joint in children. Pediatrician. 2013;4(3):65–69. (In Russ.) doi: 10.17816/PED4365-69
  17. Winthrop Z, Pinkowsky G, Hennrikus W. Surgical treatment for osteochondritis dessicans of the knee. Curr Rev Musculoskelet Med. 2015;8(4):467–475. doi: 10.1007/s12178-015-9304-9
  18. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41–A:988–1020. doi: 10.2106/00004623-200406000-00032
  19. Sergeev SV, Lastukhin IV, Petrov AG, et al. Operativnoe lechenie rassekajushhego osteohondrita kolennogo sustava u detej. Practical medicine. 2012;7–1(63). (In Russ.)
  20. Dubey NK, Mishra VK, Dubey R, et al. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci. 2018;19(8):2200. doi: 10.3390/ijms19082200
  21. Bryanskaya AI, Tykhylov RM, Kulyab TA, et al. Surgical treatment of patients with local defects of joint surface of femur condyles (review). Traumatology and orthopedics of Russia. 2010;(4):84–92. (In Russ.)
  22. Pligina EG, Soloshenko MV, Kolyagin DV. Effectiveness of autoplasma in combined therapy of children with pathology knee cartilage. Russian Journal of Pediatric Surgery, Anesthesiology and Intensive Care. 2015;5(3)31–36. (In Russ.)
  23. Pligina EG, Burkin IA, Kovalyunas IS, Anokhin VV. Ortobiologija v lechenii detej s povrezhdenijami i degenerativnymi zabolevanijami kolennogo sustava. Russian Journal of Pediatric Surgery, Anesthesiology and Intensive Care. 2020;10(S):126. (In Russ.)
  24. Roth KE, Ossendorff R, Klos K, et al. Arthroscopic Minced Cartilage Implantation for Chondral Lesions at the Talus: A Technical Note. Arthroscopy Techniques. 2021;10(4):1149–1154. doi: 10.1016/j.eats.2021.07.011
  25. Sovetnikov NN, Kalsin VA, Konoplyannikov MA, Mukhanov VV. Cell technologies and tissue engineering in the treatmentof articular chondral defects. Clinical Practice. 2013;(1):52–66. (In Russ.)
  26. Miromanov AM, Miromanov MM, Miromanova NA. Modern possibilities of the use of stromal-vascular fraction of adipose tissue in traumatology and orthopedics. Polytrauma. 2019;(3)83–89. (In Russ.)
  27. Semenov AV, Koroteev VV, Isaev IN, Vybornov DYu. Maloinvazivnoe lechenie rassekajushhego osteohondrita u detej s ispol’zovaniem biostimuljacii. Russian Journal of Pediatric Surgery, Anesthesiology and Intensive Care. 2020;10(S):149. (In Russ.)
  28. Sánchez M, Delgado D, Garate A, et al. Platelet-rich plasma combined with allograft to treat osteochondritis dissecans of the knee: a case report. Journal of medical case reports. 2019;13(1):105. doi: 10.1186/s13256-019-2027-6
  29. Russo A, Coco V, Zaffagnini S. The effect of autologous adipose derived mesenchymal stem cell therapy on juvenile osteochondritis dissecans of the patella: a case study. J Surg Case Rep. 2020:2020(8):rjaa274. doi: 10.1093/jscr/rjaa274
  30. Veremeev AV, Bolgarin RN, Petkova MA, et al. Adipose-derived stromal vascular fraction as an alternative source of cells for the regenerative medicine. Genes and Cells. 2016;11(1):35–42. (In Russ.)
  31. Lazishvili GD, Egiazaryan KA, Akhpashev AA, et al. Study of the platelet-rich plasma clinical efficacy in the treatment of knee osteoarthritis. Clinical Practice. 2016;7(3):54–60. (In Russ.) doi: 10.17816/clinpract7354-60
  32. Cugat R, Alentorn-Geli E, Navarro J, et al. A novel autologous-made matrix using hyaline cartilage chips and platelet-rich growth factors for the treatment of full-thickness cartilage or osteochondral defects: Preliminary results. Journal of Orthopaedic Surgery. 2019;28(1):2309499019887547. doi: 10.1177/2309499019887547
  33. Cole BJ, Gilat R, DiFiori J, et al. The 2020 NBA Orthobiologics Consensus Statement. Orthop J Sports Med. 2021;9(5):23259671211002296. doi: 10.1177/23259671211002296
  34. Song JS, Hong KT, Kim NM, et al. Allogenic umbilical cord blood-derived mesenchymal stem cells implantation for the treatment of juvenile osteochondritis dissecans of the knee. Journal of Clinical Orthopedics and Trauma. 2019:10(Suppl 1):S20–S25. doi: 10.4252/wjsc.v12.i6.514
  35. Beck JJ, Sugimoto D, Micheli L. Sustained Results in Long-Term Follow-Up of Autologous Chondrocyte Implantation (ACI) for Distal Femur Juvenile Osteochondritis Dissecans (JOCD). Cairo: Hindawi. Advances in Orthopedics. 2018:2018:7912975. doi: 10.1155/2018/7912975
  36. Sharma DK, Kumar N, Lal H, et al. Osteochondritis dissecans — Does platelet rich plasma really help. Journal of Clinical Orthopedics and Trauma. 2018:9(2)153–156. doi: 10.1016/j.jcot.2017.09.020
  37. Steinwqchs M, Kreuz P. Clinical results of autologous chondrocyte transplantation (ACT) using a collagen membrane. In: Cartilage Surgery and Future Perspectives. C. Hendrich, U. Nöth, J. Eulert, eds. Berlin: Springer, Heidelberg. 2003. P. 37–47. doi: 10.1007/978-3-642-19008-7_5
  38. Steinhagen J, Bruns J, Deuretzbacher G, et al. Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes. Int Orthop. 2010;34(6)819–825. doi: 10.1007/s00264-009-0841-y
  39. Salzmann GM, Niemeyer P, Hochrein A, et al. Articular Cartilage Repair of the Knee in Children and Adolescents. Orthopaedic Journal of Sports Medicine. 2018;6(3):2325967118760190. doi: 10.1177/2325967118760190
  40. Kumar V, Bhatnagar N, Lodhi JS, et al. Osteochondritis Dissecans in a Young Professional Athlete. Indian J Orthop. 2018;52(4):344–352. doi: 10.4103/ortho.IJOrtho_322_17
  41. Kessler JI, Nikizad H, Shea KG, et al. The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med. 2014:42(2):320–326. doi: 10.1177/0363546513510390.
  42. Clanton ТO, DeLee JC. Osteochondritis dissecans: history, pathophysiology and current treatment concepts. ClinOrthop. 1982:167:50–64.
  43. Smillie IS. Treatment of osteochondritis dissecans. J Bone Joint Surg Br. 1957:39–B(2):248–260. doi: 10.1302/0301-620x.39b2.248
  44. Greville NR. Osteochondritis Dissecans: Treatment by Bone Grafting. South Med J. 1964:57:886–893. PMID: 14173044.
  45. Scott DJ Jr, Stevenson CA. Osteochondritis dissecans of the knee in adults. Clin Orthop Relat Res. 1971;76:82–86. doi: 10.1097/00003086-197105000-00012
  46. Weyer FA. Van De. Contribution to the treatment of osteochondritis dissecans. Ned Tijdschr Geneeskd. 1964:108:1966–1970. PMID: 14224211.
  47. Trillat A. Internal Derangement of the Knee: Osteochondral Fractures of the Knee. Proceedings of the Royal Society of Medicine. 1968:61(1):45. doi: 10.1177/003591576806100115
  48. Randsborg PH, Kjennvold S, Røtterud JH. Arthroscopic Fixation of Osteochondritis Dissecans of the Knee Using a Motorized Pick and Headless Compression Screws. Arthrosc Tech. 2019:8(10):e1115–e1120. doi: 10.1016/j.eats.2019.05.031
  49. Shaikh HH, Vicha J, Procek T, et al. Osteochondritis dissecans of the knee in children and adolescents: our experience with transchondral drilling. Acta Medica (Hradec Kralove). 2015:58(3):98–103. doi: 10.14712/18059694.2015.101
  50. Miller BS, Briggs KK, Downie B, Steadman JR. Clinical Outcomes following the Microfracture Procedure for Chondral Defects of the Knee: A Longitudinal Data Analysis. Cartilage. 2010:1(2):108–112. doi: 10.1177/1947603510366575
  51. Andelman SM, Mandelbaum BR, Fitzsimmons KP, Pace JL. Retroarticular Core Decompression with Biologic Augmentation for Juvenile Osteochondritis Dissecans of Knee. Arthroscopy Technigues. 2020:9(7):e1003–e1009. doi: 10.1016/j.arthro.2020.11.036
  52. Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Joint Surg Br. 2005:87(4):445–449. doi: 10.1302/0301-620X.87B4.15971
  53. Airapetov GA, Vorotnikov AA, Konovalov EA. Surgical methods of focal hyaline cartilage defect management in large joints (literature review). Orthopaedic Genius. 2017;23(4):485–491. (In Russ.) doi: 10.18019/1028-4427-2017-23-4-485-491
  54. Malanin DA. Vosstanovlenie povrezhdenij hrjashha v kolennom sustave. Volgograd: Volgograd Scientific Publishing House; 2010. 454 p. (In Russ.)
  55. Slotkin S, Thome A, Ricketts C, Georgiadis A, et al. Anterior Knee Pain in Children and Adolescents: Overview and Management. J Knee Surg. 2018;31(5):392–398. doi: 10.1055/s-0038-1632376
  56. Malanin DA, Pisarev VB, Cherezov LL. Plastika polnoslojnyh defektov pokrovnogo hrjashha kolennogo sustava cilindricheskimi kostno-hrjashhevymi auto-i allotransplantatami malogo razmera (jeksperimental’noe issledovanie). Journal of Traumatology and Orthopedics Priorov NN. 2000;(2):16–21. (In Russ.)
  57. Stenberg J, de Windt TS, Synnergren J, et al. Clinical Outcome 3 Years After Autologous Chondrocyte Implantation Does Not Correlate with the Expression of a Predefined Gene Marker Set in Chondrocytes Prior to Implantation but Is Associated with Critical Signaling Pathways. Orthop J Sports Med. 2014:2(9):2325967114550781. doi: 10.1177/2325967114550781
  58. Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol. Asses. 2017:21(6):1–294. doi: 10.3310/hta21060
  59. Marcacci M, Zaffagnini S, Kon E, et al. Arthroscopic autologous condrocyte transplantation: technical note. Knee, Surg, Sports Traumatol Arthrosc. 2002:10(3):154–159. doi: 10.1007/s00167-001-0275-6
  60. Becerra J, Andrades JA, Guerado E, et al. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010:16(6):617–627. doi: 10.1089/ten.TEB.2010.0191
  61. Ochi M, Uchio Y, Kawasaki K, et al. Transplantation of cartilage like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br. 2002;84(4):571–578. doi: 10.1302/0301-620x.84b4.11947
  62. Caron MM, Emans PJ, Coolsen MM, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 2012:20(10):1170–1178. doi: 10.1016/j.joca.2012.06.016
  63. Kon E, Delcogliano M, Filardo G, et al. Second generation issues in cartilage repair. Sports Med Arthrosc. 2008:16(4):221–229. doi: 10.1097/JSA.0b013e31818cdbc5
  64. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomized study. Bone Joint Surg. Br. 2005:87(5):640–645. doi: 10.1302/0301-620X.87B5.15905
  65. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010:38(6):1259–1271. doi: 10.1177/0363546509346395
  66. Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI) — 5-year follow-up. Knee. 2006:13(3):194–202. doi: 10.1016/j.knee.2006.02.012
  67. Maus U, Schneider U, Gravius S, et al. Clinical results after three years use of matrix-associated ACT for the treatment of osteochondral defects of the knee. Z Orthop Unfall. 2008:146(1):31–37. doi: 10.1055/s-2007-989353
  68. Selmi TA, Verdonk P, Chambat P, et al. Autologous chondrocyte implantation in a novel alginate agarose hydrogel: outcome at two years. J Bone Joint Surg. Br. 2008:90(5):597–604. doi: 10.1302/0301-620X.90B5.20360
  69. Ossendorf C, Kaps C, Kreuz PC. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2 year clinical results. Arthritis Res Ther. 2007:9(2):R41. doi: 10.1186/ar2180
  70. Ebert JR, Fallon M, Ackland TR, et al. Arthroscopic matrix-induced autologous chondrocyte implantation: 2-year outcomes. Arthroscopy. 2012:28(7):952–964.e1–2. doi: 10.1016/j.arthro.2011.12.022
  71. Niemeyer P, Salzmann G, Schmal H, et al. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. KSSTA. 2012:20(9):1696–1703. doi: 10.1007/s00167-011-1729-0
  72. Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng. 2001:7(2):211–228. doi: 10.1089/107632701300062859
  73. Polancec D, Zenic L, Hudetz D, et al. Immunophenotyping of a Stromal Vascular Fraction from Microfragmented Lipoaspirate Used in Osteoarthritis Cartilage Treatment and Its Lipoaspirate Counterpart. Genes (Basel). 2019:10(6):474. doi: 10.3390/genes10060474
  74. Naida DA. Klinicheskoe ispol’zovanie stromal’no-vaskuljarnoj frakcii zhirovoj tkani pri lechenii posledstvij travm i zabolevanij oporno-dvigatel’nogo apparat. Opinion Leader. 2018;(5):36–44. (In Russ.)
  75. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012:347(3):613–627. doi: 10.1007/s00441-011-1243-1
  76. Kim I, Bang SI, Lee SK, et al. Clinical implication of allogenic implantation of adipogenic differentiated adipose-derived stem cells. Stem Cells Transl Med. 2014:3(11):1312–1321. doi: 10.5966/sctm.2014-0109
  77. Johal KS, Lees VC, Reid AJ. Adipose-derived stem cells: selecting for translational success. Regen Med. 2015:10(1):79–96. doi: 10.2217/rme.14.72
  78. Williams SK, Morris ME, Kosnik PE, et al. Point-of-care adipose-derived stromal vascular fraction cell isolation and expanded polytetrafluoroethylene graft sodding. Tissue Eng Part C Methods. 2017:23(8):497–504. doi: 10.1089/ten.TEC.2017.0105
  79. Platas J, Guillén MI, Pérez Del Caz MD, et al. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes. Aging (Albany NY). 2016;8(8):1703–1717. doi: 10.18632/aging.101007
  80. Filardo G, Perdisa F, Roffi A, et al. Stem cells in articular cartilage regeneration. Journal of Orthopaedic Surgery and Research. 2016;11:42. doi: 10.1186/s13018-016-0378-x
  81. Han J, Koh YJ, Moon HR, et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2010:115(5):957–964. doi: 10.1182/blood-2009-05-219923
  82. Cotter EJ, Wang KC, Yanke AB, et al. Bone Marrow Aspirate Concentrate for Cartilage Defects of the Knee: From Bench to Bedside Evidence. Cartilage. 2018;9(2):161–170. doi: 10.1177/1947603517741169
  83. Daltro G, Franco BA, Faleiro TB, et al. Use of autologous bone marrow stem cell implantation for osteonecrosis of the knee in sickle cell disease: a preliminary report. BMC Musculoskelet Disord. 2018;19(1)158. doi: 10.1186/s12891-018-2067-x
  84. Szwedowski D, Dallo I, Irlandini E, Gobbi A. Osteo-core Plasty: A Minimally Invasive Approach for Subchondral Bone Marrow Lesions of the Knee. Arthrosc Tech. 2020;9(11):e1773–e1777. doi: 10.1016/j.eats.2020.07.023
  85. Looze CA, Capo J, Ryan MK, et al. Evaluation and Management of Osteochondral Lesions of the Talus. Cartilage. 2017;8(1):19–30. doi: 10.1177/1947603516670708
  86. Castrodad IMD, Simone ES, Kurowicki J, et al. Improved Short-Term Outcomes of Osteochondral Lesions of the Knee Following Arthroscopic Treatment with Bone Marrow Aspirate Concentrate and Cartilage-Derived Matrix. Arthrosc Sports Med Rehabil. 2021;3(2):e477–e484. doi: 10.1016/j.asmr.2020.11.002
  87. Pligina EG, Burkin IA, Ezelskaya LV. Pathology of the knee cartilage in children. Traumatology and orthopedics of Russia. 2006;(2):239. (In Russ.)
  88. Semenov AV, Kukueva DM, Lipkin YuG, et al. Surgical treatment of stable foci of the osteochondritis dissecans in children: a systematic review. Pediatric Surgery. 2021;25(3):179–185. (In Russ.) doi: 10.18821/1560-9510-2021-25-3-179-185
  89. Chambers HG, Shea KG, Carey JL. AAOS Clinical Practice Guideline: diagnosis and treatment of osteochondritis dissecans. J Am Acad Orthop Surg. 2011;19(5):307–309. doi: 10.5435/00124635-201105000-00008
  90. Rassekajushhij osteohondrit kolennogo sustava. National clinical guidelines [internet]. Saint Petersburg; 2013. (In Russ.) Available from: http://docplayer.com/55034070-Rassekayushchiy-osteohondrit-kolennogo-sustava.html. [cited: 21.01.2022].

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies