State of island spruce forests in the Western part of the Bolshezemelskaya tundra after 23 years
- Авторлар: Lavrinenko O.V.1,2, Lavrinenko I.А.1, Simonova K.I.1
-
Мекемелер:
- Komarov Botanical Institute RAS
- Nenetsky State Nature Reserve
- Шығарылым: Том 15, № 1 (2024)
- Беттер: 30-67
- Бөлім: Experimental works
- URL: https://journals.rcsi.science/2218-4422/article/view/364947
- DOI: https://doi.org/10.18822/edgcc629471
- ID: 364947
Дәйексөз келтіру
Толық мәтін
Аннотация
Modern climate warming, which began in the 1970s, has been observed throughout the Arctic including its Russian part [А report …, 2023; Druckenmiller et al., 2021]. It is accompanied by a large number of papers by Russian and foreign scientists on the forest boundary advancement to the north, and its upper boundary in the mountains – up the slopes [Shiyatov et al., 2007, Harsch et al., 2009; Bolotov et al., 2012; Grigor'ev et al., 2013, 2019; Moiseev et al., 2019; Shiyatov et al., 2020; Timofeev et al., 2021; Dial et al., 2022; Hansson, 2022, etc.]. Climate change rate is high in the East European sector of the Arctic: over the last 35 years the average annual air temperature increase has reached +0.8°C/10 years [Malkova et.al., 2021], the length of the growing season has increased by an average of 2 weeks and the amount of heat accumulated during this period has increased by an average of 85°C [Lavrinenko et al., 2022].
The northern forest boundary (timberline) in East European Russia is formed by Picea obovata and runs at N 67°30ʹ-67°10ʹ. In the Bolshezemelskaya Tundra, spruce is found rather far north of the forest boundary and even north of N 68°. Spruce islands have been preserved here since the Holocene in refugia – sites with favorable microclimatic and soil conditions. Relict spruce islands are groups of closely spaced, thin-stemmed trees occupying upland landform elements on sandy outcrops of watersheds. Skirt-shaped growth trees are united by a common root system and appear to be clones formed by vegetative propagation [Lavrinenko, Lavrinenko, 2004a].
In the framework of the international SPICE project, 8 spruce islands were discovered and studied at latitude N 67°54'-67°56' (Fig. 1). Complete relevés were carried out within the boundaries of the 5 islands. Species abundance was estimated using the Brown-Blanquet’s scale [Becking, 1957]. The height of the tallest trunks was measured with a measuring tape and their diameter at the trunk base (in island E2 at a height of 50 cm) – with a caliper. In 2000, a spruce island was described at the northernmost site (N 68°17') near Cape Bolvansky Nos on the coast of the Pechora Bay of the Barents Sea (Fig. 1). The results of the spruce islands structure and cenoflora study have been published [Lavrinenko, Lavrinenko, 2003]. This data provided an opportunity to trace the changes of the islands 23 years later.
All spruce islands in the Ortina Basin were resurveyed between 20 and 30 July 2023. The study included tree morphometric measurements, geobotanical relevés and comparative landscape photography. The surveys on the islet at Cape Bolvansky Nos were carried out in 2000, 2014 and 2020 and included plant community relevés and photography and height measurements of the 6 tallest living spruce tops; photos were taken during a short visit in 2017.
Comparative analysis of the spruce islands composition and structure after almost a quarter of a century have shown:
1) In the Ortina River basin, in relict spruce islands on watersheds (E1, E4-E8), mean tree height has increased by 1.1-1.9 m and mean diameter – by 1.9-3.0 cm, i.e. mean height growth was 4.3-8.3 cm/year and radial growth was 0.41-0.65 mm/year. On a spruce island in the Ortina River valley (E2) with more favorable microclimatic conditions, these values were significantly higher – trees have grown on an average 2.8 m, diameter – 3.7 cm, i.e. height growth was 12.2 cm/year, radial growth – 0.8 mm/year (Table 1, Fig. 2а and б). In 2000 spruce island E3 was located on a sandy mound in the center of a sandy outcrop. By 2023 the mound has been almost completely destroyed by winds, the spruce looked like dying off and most likely it will disappear after some time (Fig. 9).
2) The shape of the tree crowns has changed. In 2000, spruce trees predominantly had "skirts" of well-developed lower branches. The upper part of the trees could have a cylindrical crown or the trunk could be partially devoid of branches with needles only at the top. By 2023, the crown of the most trees has become conical or narrow pyramidal with well-developed lower branches and green branches all over the trunk. On the E2 spruce island in the valley, the cone-shaped crowns of the trees have become lusher.
3) On all islands spruce has been spreading vegetatively by rooting lower branches and subsequently changing their growth from plagiotropic to orthotropic. This process has been especially active on the slopes of southern exposition. As a result, the area of the islands has slightly increased. Despite the abundance of both male strobiles and mixed-aged female cones, no undergrowth or freestanding young spruce trees were found in the surroundings. This indicates the absence of reproduction by seed for 23 years. The results prove the earlier suggestion that the northward advance of forests in watersheds is limited by the lack of quality seeds for sexual reproduction [Andreev, 1954; Norin, 1958; Surso, Barzut, 2010]. The earlier assumption that spruce islands could become a springboard for the spruce introduction into tundra communities under climate warming [Lavrinenko, Lavrinenko, 1999, 2004b] is currently not confirmed.
4) Comparative photos taken from the same angles in 2000 and 23 years later are shown for all spruce islands (Fig. 3-8, 10). They display a significant tree state improvement.
5) At Cape Bolvansky Nos in the northernmost spruce islet (N 68°17'), both a surge (in 2014) and a decline in spruce vitality have been recorded over the past 20-year period. There was no increase in island area observed, in 2020 the condition of the spruce was depressed and close to 2000 (Fig. 11).
6) The dwarf shrub green-mossy spruce islands cenoflora was characterised by stability. Changes in the species composition were due to single, predominantly cryptogamous plants (Table 2). Key species, in addition to Picea obovata, are: Betula pubescens subsp. tortuosa, dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis-idaea, Linnaea borealis, Arctous alpina, bryophytes Pleurozium schreberi, Hylocomium splendens and Ptilidium ciliare. Juniperus sibirica and Betula nana were often found in the shrub layer. The most active permanent herbaceous plant was Festuca ovina (Tables 1 and 2).
7) Landscape photos show the "greening" of surrounding tundra communities in watersheds and stream valleys in the Ortina River Basin due to climate warming. On watersheds, Betula pubescens subsp. tortuosa has actively introduced into tundra communities, and juveniles and young trees have gained straight trunks from the base of the tree (Fig. 13). In the river valley and its tributaries, the area and height of bushes of Juniperus sibirica, shrubby willows and especially Alnus fruticosa have increased (Fig. 8а and б, 14).
8) The current position of the island spruce sparse forests` northern boundary in the Ortina River valley recorded on the satellite image is at latitude N 67°53ʹ (Fig. 15) and has not changed over the last 20 years. The reason appears to be the lack of good quality seed for sexual reproduction. Monitoring studies could make it possible to trace the time when the boundaries of spruce sparse forests and spruce islands will close up in case of further possible climate warming. The distance between them is now quite small – 3-6 kilometers.
Негізгі сөздер
Авторлар туралы
O. Lavrinenko
Komarov Botanical Institute RAS; Nenetsky State Nature Reserve
Хат алмасуға жауапты Автор.
Email: lavrino@mail.ru
Ресей, St.-Petersburg; Naryan-Mar
I. Lavrinenko
Komarov Botanical Institute RAS
Email: lavrino@mail.ru
Ресей, St.-Petersburg
K. Simonova
Komarov Botanical Institute RAS
Email: lavrino@mail.ru
Ресей, St.-Petersburg
Әдебиет тізімі
- Andreev V.N. 1954. Promotion of woody vegetation into the tundra in connection with the protective properties of forest plantations in the North. Botanic Journal, 39(1):28-47. (In Russian). [Андреев В.Н. 1954. Продвижение древесной растительности в тундру в связи с защитными свойствами лесопосадок на Севере // Ботанический журнал. Т. 39. № 1. С. 28-47].
- Andreev V.N. 1956. Population of the tundra by forest in the modern era. In: Vegetation of the Far North of the USSR and its development. V.1. pp. 27-45., Publishing House of the USSR Academy of Sciences. Moscow. (In Russian). [Андреев В.Н. 1956. Заселение тундры лесом в современную эпоху // Растительность крайнего севера СССР и ее освоение. Вып. 1. М.: Изд-во АН СССР. С. 27-45].
- Andreicheva L.N. 2002. Pleistocene of the European Northeast. Ekaterinburg: Ural Branch of the Russian Academy of Sciences. 321 pp. (In Russian). [Андреичева Л.Н. 2002. Плейстоцен европейского Северо-Востока. Екатеринбург: УРО РАН, 321 с.
- Becking R. 1957. The Zürich-Montpellier school of phytosociology. The Botanical Review. Vol. 23. N 7. pp. 411-488.
- Bolotov I.N., Surso M.V., Filippov B.YU., Gofarov M.YU., Tarakanov A.M. 2012. Changes in tree stands on isolated forest islands in the east of Bolshezemelskaya tundra for the last 100 years in a changing climate. Russian forestry journal. 5: 329. pp. 30-37 (In Russian). [Болотов И.Н., Сурсо М.В., Филиппов Б.Ю., Гофаров М.Ю., Тараканов А.М. 2012. Изменения древостоев в изолированных лесных островах востока Большеземельской тундры за последние 100 лет в условиях меняющегося климата // Известия высших учебных заведений. Лесной журнал. № 5(329). С. 30-37].
- Callaghan T.V., Werkman B.R., Crawford R.M.M. 2002. The tundra-taiga interface and its dynamics: concepts and applications. Ambio Special Report. 12: 6-14.
- Development of landscapes and climate of Northern Eurasia. Late Pleistocene – Holocene; Forecast elements. 1993.(A.A. Velichko), Vol.1. pp. 102. Nauka, Moscow. (In Russian). [Развитие ландшафтов и климата Северной Евразии. Поздний плейстоцен – голоцен; Элементы прогноза. 1993. / Под ред. А.А. Величко/. М.: Наука. Вып. 1. 102 c.]
- Dial R.J., Maher C.T., Hewitt R.E., Sullivan P.F. 2022. Sufficient conditions for rapid range expansion of a boreal conifer. Nature. Vol. 608. pp. 546-551. doi: 10.1038/s41586-022-05093-2
- Druckenmiller M.L., Moon T., Thoman R. 2021. The Arctic / State of the Climate in 2020. Bull. Amer. Meteor. Soc. 102(8): 263-315. doi: 10.1175/BAMS-D-21-0086.1
- Grigor'ev A.A., Devi N.M., Kukarskikh V.V., V'yukhin S.O., Galimova A.A., Moiseev P.A., Fomin V.V. 2019. Structure and dynamics of tree stands at the upper timberline in the western part of the Putorana plateau. Russian Journal of Ecology. 50 (4): 311-322. (In Russian). [Григорьев А.А., Дэви Н.М., Кукарских В.В., Вьюхин С.О., Галимова А.А., Моисеев П.А., Фомин В.В. 2019. Структура и динамика древостоев верхней границы леса в западной части плато Путорана // Экология. № 4. С. 243-254] doi: 10.1134/S0367059719040073
- Grigor'ev A.A., Moiseev P.A., Nagimov Z.Y. 2013. Dynamics of the timberline in high mountain areas of the Nether-Polar Urals under the influence of current climate change. Russian Journal of Ecology. 44 (4): 284-295. (In Russian). [Григорьев А.А., Моисеев П.А., Нагимов З.Я. 2013. Динамика верхней границы древесной растительности в высокогорьях Приполярного Урала под влиянием современного изменения климата // Экология. № 4. С. 284-295]. doi: 10.7868/S0367059713040069
- Grisebach A. 1872. Die Vegetation der Erde nach ihrer klimatischen Anordnung., Ein Abriss der vergleichenden Geographie der Pflanzen. Leipzig. Vol. I. 27 pp.
- Hansson A. 2022. Understanding treeline migration in response to modern climate change: Where is it happening, how are we measuring it, and what are the implications? Thesis PhD. The University of Queensland, Australia. 217 pp.
- Harris J.A., Hollister R.D., Botting T.F., Tweedie C.E., Betway K.R., May J.L., Barrett R.T.S., Leibig J.A., Christoffersen H.L., Vargas S.A., Orejel M., Fuson T.L. 2021. Understanding the climate impacts on decadal vegetation change in northern Alaska. Arctic Science. 00: 1–21 (0000). doi: 10.1139/as-2020-0050
- Harsch M.A., Hulme P.E., McGlone M.S., Duncan R.P. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12: 1040-1049. doi: 10.1111/j.1461-0248.2009.01355.x
- Ignatov M.S., Afonina O.M., Ignatova E.A., Abolina A., Akatova T.V., Baisheva E.Z., Bardunov L.V., E.A. Baryakina, O.A. Belkina, A.G. Bezgodov, M.A. Boychuk, V.Ya. Cherdantseva, I.V. Czernyadjeva, G.Ya. Doroshina, A.P. Dyachenko, V.E. Fedosov, I.L. Goldberg, E.I. Ivanova, I. Jukoniene, L. Kannukene, S.G. Kazanovsky, Z.Kh. Kharzinov, L.E. Kurbatova, А.I. Maksimov, U.K. Mamatkulov, Manakyan V.A., Maslovsky O.M., Napreenko M.G., Otnyukova T.N., Partyka L.Ya., Pisarenko O.Yu., Popova N.N., Rykovsky G.F., Tubanova D.Ya., Zheleznova G.V., Zolotov V.I. 2006. Check-list of mosses of East Europe and North Asia. Arctoa. 15: 1-128.
- Kharuk V.I., Im S.T., Ranson K.J., Sun G. 2005. High resolution satellite images in the forest tundra ecotone dynamics analysis. Exploration of the Earth from Space. 6: 46-55. (In Russian). [Харук В.И., Им С.Т., Рэнсон К.Дж., Сан Г. 2005. Космоснимки высокого разрешения в анализе временной динамики экотона лесотундры // Исследование земли из космоса. № 6. С. 46-55].
- Kruse S., Gerdes A., Kath N.J., Epp L.S., Stoof-Leichsenring K.R., Pestrya-kova L., Herzschuh U. 2019. Dispersal distances and migration rates at the arctic treeline in Siberia – a genetic and simulation based study. Biogeosciences. 16: 1211-1224. doi: 10.5194/bg-16-1211-2019
- Lavrinenko I.A. and Lavrinenko O.V. 1999. Relict spruce forest ‘islands’ in the Bolshezemelskaya tundra – control sites for long-term climatic monitoring. Chemosphere. 1(4): 389-402.
- Lavrinenko O.V. and Lavrinenko I.A. 2022. Twenty-one year dynamics of vegetation from long-term plots in East European tundra. Environmental dynamics and global climate change. 13(2): 70-103. doi: 10.18822/edgcc109513
- Lavrinenko O.V., Lavrinenko I.A. 2003. Spruce islands of the East European Tundra. Botanical journal. 88 (8): 59-77. (In Russian). [Лавриненко О.В., Лавриненко И.А. 2003. Островные ельники восточно-европейских тундр // Ботанический журнал. Т. 88. № 8. С. 59-77].
- Lavrinenko O.V., Lavrinenko I.A. 2004a. Clonal structure and variability of Siberian Spruce (Picea Obovata Ledeb.) in isolated populations at the very north limit of habitat. Siberian Journal of Ecology. 11 (2): 179-190. (In Russian). [Лавриненко О.В., Лавриненко И.А. 2004a. Клональная структура и изменчивость ели сибирской (Picea obovata Ledeb.) в изолированных популяциях на самом северном пределе распространения // Сибирский экологический журнал. Т. 11. № 2. С. 179-190].
- Lavrinenko O.V., Lavrinenko I.A. 2004b. Phytoindication of climate change in the North-East of the European part of Russia. Geography and Natural Resources. 2: 54-61. (In Russian). [Лавриненко О.В., Лавриненко И.А. 2004b. Фитоиндикация изменений климата на Северо-Востоке европейской части России // География и природные ресурсы. № 2. С. 54-61].
- Lavrinenko O.V., Petrovskiy V.V., Lavrinenko I.A. 2019. New local floras and materials for floristic subdivision of the East European Tundra. Botanical journal. 104 (1): 58-92. (In Russian). [Лавриненко О.В., Петровский В.В., Лавриненко И.А. 2019. Новые локальные флоры и материалы к флористическому районированию восточноевропейских тундр // Ботанический журнал. Т. 104. № 1. С. 58-92]. doi: 10.1134/S0006813619010083
- Lavrinenko O.V., Tyusov G.A., Petrovsky V.V. 2022. Impact of climate warming on floristic diversity of the East European tundra // Environmental dy-namics and global climate change. 13(1): 35-48. doi: 10.18822/edgcc101643
- Maher C., Dial R., Pastick N.J., Hewitt R.E., Jorgenson M.T., Sullivan P.F. 2021. The climate envelope of Alaska's northern treelines: implications for controlling factors and future treeline advance. Ecography. 44: 1710-1722. doi: 10.1111/ecog.05597
- Malkova G.V., Korostelev YU.V., Skvortsov A.G., Sudakova M.S., TSarev A.M. 2021. Geocryological consequences of modern climate changes – results of comprehensive monitoring at geocryological stations in the Nenets Autonomous Okrug. In: Materials of the All-Russian scientific and technical conference “Comprehensive study and development of the subsoil of the European North of Russia - 2021” (Ukhta, September 16–17, 2021). pp. 167-173. (In Russian). [Малкова Г.В., Коростелев Ю.В., Скворцов А.Г., Судакова М.С., Царев А.М. 2021. Геокриологические последствия современных климатических изменений – результаты комплексного мониторинга на геокриологических стационарах в Ненецком автономном округе // Мат-лы всеросс. науч.-техн. конф. «Комплексное изучение и освоение недр Европейского Севера России – 2021» (Ухта, 16–17 сентября 2021 г.). С. 167-173].
- Mazepa V.S. 1998. Spatiotemporal variability of radial growth of coniferous tree species in the subarctic regions of Eurasia: Abstract dis. Doctor of biol. sciences. Ekaterinburg. 38 pp. (In Russian). [Мазепа В.С. 1998. Пространственно-временная изменчивость радиального прироста хвойных видов деревьев в субарктических районах Евразии: Автореф. дисс. … докт. биол. наук. Екатеринбург. 38 с.]
- Moiseev P.A., Galimova A.A., Bubnov M.O., Fomin V.V., Terskaya A.I. 2019. Tree stand dynamics at the upper treeline on the Kola Peninsula in the last century. In: Abstract. report VII All-Russian Scientific Conference with international participation “Ecological problems of the northern regions and ways to solve them” (Apatity, June 16–22, 2019). Apatity. Publishing house Kola Science Centre RAS. [Моисеев П.А., Галимова А.А., Бубнов М.О., Фомин В.В., Терская А.И. 2019. Динамика древостоев на верхнем пределе их произрастания на Кольском полуострове в последнем столетье // Тез. докл. VII Всероссийской научной конференции с международным участием «Экологические проблемы северных регионов и пути их решения» (Апатиты, 16–22 июня 2019 г.). Апатиты: Изд-во Кольский НЦ РАН. С. 187-188].
- Norin B.N. 1958. Towards the knowledge of seed and vegetative regeneration of tree species in the forest-tundra. Vegetation of the Far North of the USSR and its development. M.; L.: Publishing house of the USSR AS. 3: 154-244. (In Russian). [Норин Б.Н. 1958. К познанию семенного и вегетативного возобновления древесных пород в лесотундре // Растительность Крайнего Севера СССР и ее освоение. М.; Л.: Изд-во АН СССР. Вып. 3. С. 154-244].
- Oberbauer S.F., Elmendorf S.C., Troxler T.G., Hollister R.D., Rocha A.V., Bret-Harte M.S., Dawes M.A., Fosaa A.M., Henry G.H.R., Hoye T.T., Jarrad F.C., Jonsdottir I.S., Klanderud K., Klein J.A., Molau U., Rixen C., Schmidt N.M., Shaver G.R., Slider R.T., Totland O., Wahren C.-H., Welker J.M. 2013. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philosophical Transactions of the Royal Society B-Biological Sciences. 368(1624): UNSP 20120481. doi: 10.1098/rstb.2012.0481
- Paulsen J. and Körner C. 2014. A climate-based model to predict potential treeline position around the globe. Alpine Botany. 124: 1-12.
- Potemkin A.D., Sofronova E.V. 2009. Liverworts and hornworts of Russia. Vol. 1. St. Petersburg – Yakutsk. 368 pp. (In Russian). [Потeмкин А.Д. и Софронова Е.В. 2009. Печеночники и антоцеротовые России. Т. 1. Санкт-Петербург – Якутск. 368 с.]
- Quaternary glaciations on the territory of the USSR. 1987. (A.A. Velichko and others). Moscow. Nauka. 128 pp. (In Russian). [Четвертичные оледенения на территории СССР./ Под. ред. А.А. Величко и др./. 1987. М.: Наука. 128 с.]
- Rees W.G., Hofgaard A., Boudreau S., Cairns D.M., Harper K., Mamet S., Mathisen I., Swirad Z., Tutubalina O. 2020. Is subarctic forest advance able to keep pace with climate change? Global Change Biology. 26: 3965–3977. doi: 10.1111/gcb.15113
- Rusanova G.V., Deneva S.V. 2006. Soils of relic spruce (Picea obovata Ledeb.) forest islands in northwestern Bol'shezemel'skaya Tundra. Lesovedenie. 2: 21-25. (In Russian). [Русанова Г.В. и Денева С.В. 2006. Почвы реликтовых островков ели на северо-западе Большеземельской тундры // Лесоведение. № 2. С. 21-25].
- Santesson R., Moberg R., Nordin A., Tønsberg T., Vitikainen O. 2004. Lichenforming and lichenicolous fungi of Fennoscandia. Museum of Evolution. Uppsala University. 359 pp.
- Schuur E.A.G., Crummer K.G., Vogel J.G., Mack M.C. 2007. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems. 10(2): 280–292. doi: 10.1007/s10021-007-9024-0
- Sekretareva N.A. 2004. Vascular plants of the Russian Arctic and adjacent territories. Moscow. 131 pp. (In Russian). [Секретарева Н.А. 2004. Сосудистые растения Российской Арктики и сопредельных территорий. М. 131 с.]
- Shiyatov S.G. 1976. Secular variability in the growth of Siberian spruce in the lower reaches of the river Pechory. Forestry, forestry: Abstracts. report VII Symposium “Biological Problems of the North”. Petrozavodsk pp. 224-225. (In Russian). [Шиятов С.Г. 1976. Вековая изменчивость прироста ели сибирской в низовье р. Печоры // Лесоведение, лесоводство: Тез. докл. VII симпозиума «Биологические проблемы Севера». Петрозаводск. С. 224-225].
- Shiyatov S.G. 1981. Climatogenic changes in forest vegetation at the upper and polar limits of its growth: Abstract dis. Doctor of biol. sciences. Sverdlovsk. 57 pp. (In Russian). [Шиятов С.Г. 1981. Климатогенные смены лесной растительности на верхнем и полярном пределах ее произрастания: Автореф. дис. … д-ра биол. наук. Свердловск. 57 с.]
- Shiyatov S.G. 2009. Dynamics of woody and shrub vegetation in the Polar Urals under the influence of current climate changes. Ekaterinburg. 219 pp. (In Russian). [Шиятов С.Г. 2009. Динамика древесной и кустарниковой растительности в горах Полярного Урала под влиянием современных изменений климата. Екатеринбург. 219 с.]
- Shiyatov S.G., Moiseev P.A., Grigor'ev A.A. 2020. Photomonitoring of tree and shrub vegetation in the highlands of the Southern Urals over the past 100 years. Ekaterinburg. 191 pp. (In Russian). [Шиятов С.Г., Моисеев П.А., Григорьев А.А. 2020. Фотомониторинг древесной и кустарниковой растительности в высокогорьях Южного Урала за последние 100 лет. Екатеринбург. 191 с.]
- Shiyatov S.G., Terent'ev M.M., Fomin V.V., Tsimmermann N.E. 2007. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century. Russian Journal of Ecology. 38 (4): 223-227.
- Surso M.V., Barzut O.S. The growth and morphology peculiarities of coniferouses in Bolshezemelskaya Tundra. Spuce in Pym-Va-Shor area. Forestry bulletin. 5: 42-48. (In Russian). [Сурсо М.В., Барзут О.С. 2010. Особенности роста и развития хвойных в Большеземельской тундре. Ель в урочище Пым-Ва-Шор // Лесной вестник. № 5. С. 42-48].
- Timofeev A.S., V'yukhin S.O., Grigor'ev A.A., Moiseev P.A. 2021. Structure and dynamics of larch stands in the upper part of the mountain-forest belt of the massif dry mountains (Putorana Plateau). Forests of Russia and economy in them. 1 (76): 23-28 (In Russian). [Тимофеев А.С., Вьюхин С.О., Григорьев А.А., Моисеев П.А. 2021. Структура и динамика древесной и кустарниковой растительности на верхнем пределе своего произрастания на плато Путорана // Леса России и хозяйство в них. № 1(76). С. 23-28].
- Yudin Yu. P. 1954. Forests. Productive forces of the Komi ASSR. Vol. III. Part 1. Flora. pp. 45-48. (In Russian). [Юдин Ю.П. 1954. Леса // Производительные силы Коми АССР. Т. III. Ч. 1. Растительный мир. С. 45-48].
- А report on climate features on the territory of the Russian Federation in 2022. M. 104 pp. Доклад об особенностях климата на территории Российской Федерации за 2022 год. 2023. М. 104 с. URL. https://meteoinfo.ru/images/media/climate/rus-clim-annual-report.pdf (дата обращения: 01.12.2023).
Қосымша файлдар

