Influence of the Approach to Membrane Mass Transfer Characteristics Determination on the Process Simulation Results

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, the dependence of the output characteristics determined in the simulation of the gas separation membrane process on the gas transport characteristics of the membrane specified as parameters of the membrane module model has been investigated. The study was carried out on a laboratory setup containing polyphenylene oxide hollow fibres. As a result of this integrated study, including theoretical and experimental approaches, it has been determined that when using the ideal gas transport characteristics obtained for pure gases to simulate the process, the error expressed in achievable concentration of the target component in the product stream ranges from 1.5 to 8.8% compared to the experimentally obtained values for the same module geometry and the same membrane area. This discrepancy can lead both to unattainable targets for the technological line and to an incorrect technical and economic evaluation of the process. Thus, the design of technological lines using mathematical modelling tools should be based on the “effective” gas transport characteristics of the material and/or product obtained for the components of real gas mixtures or simulating real gas mixtures.

作者简介

A. Atlaskin

Mendeleev Russian University of Chemical Technology

编辑信件的主要联系方式.
Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

S. Kryuchkov

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

A. Stepakova

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

I. Moiseenko

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

N. Tsivkovsky

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

K. Smorodin

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

A. Petukhov

Mendeleev Russian University of Chemical Technology; Department of Chemistry, Lobachevsky State University of Nizhny Novgorod

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9; Russia, 603022, Nizhny Novgorod, 23 Gagarin Avenue

M. Atlaskina

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

I. Vorotyntsev

Mendeleev Russian University of Chemical Technology

Email: atlaskin.a.a@muctr.ru
Russia, 125047, Moscow, Miusskaya square, 9

参考

  1. Alsawaftah N., Abuwatfa W., Darwish N., Husseini G. // Water. 2021. V. 13. I. 9. P. 1327.
  2. Chaturvedi P., Moehring N.K., Cheng P., Vlassiouk I., Boutilier M.S.H., Kidambi P.R. // J. Materials Chemistry A. 2022. V. 10. I. 37. P. 19797–19810.
  3. Trubyanov M.M., Drozdov P.N., Atlaskin A.A., Battalov S.V., Puzanov E.S., Vorotyntsev A.V., Petukhov A.N., Vorotyntsev V.M., Vorotyntsev I.V. // J. Membrane Science. 2017. V. 530. P. 53–64.
  4. Trubyanov M.M., Kirillov S.Y., Vorotyntsev A.V., Sazanova T.S., Atlaskin A.A., Petukhov A.N., Kirillov Y.P., Vorotyntsev I.V. // J. Membrane Science. 2019. V. 587. № 117173.
  5. Ahmad F., Lau K.K., Shariff A.M., Murshid G. // Computers & Chemical Engineering. 2012. V. 36. I. 1. P. 119–128.
  6. Chu Y., He X. // Membranes. 2018. V. 8. I. 4. P. 118.
  7. Atlaskin A.A., Trubyanov M.M., Yanbikov N.R., Bukovsky M.V., Drozdov P.N., Vorotyntsev V.M., Vorotyntsev I.V. // Petroleum Chemistry. 2018. V. 58. I. 6.
  8. Merkel T.C., Lin H., Wei X., Baker R. // J. Membrane Science. 2010. V. 359. I. 1–2. P. 126–139.
  9. Bounaceur R., Berger E., Pfister M., Ramirez Santos A.A., Favre E. // J. Membrane Science. 2017. V. 523. P. 77–91.
  10. Zhao L., Riensche E., Menzer R., Blum L., Stolten D. // J. Membrane Science. 2008. V. 325. I. 1. P. 284–294.
  11. Brunetti A., Zito P.F., Borisov I., Grushevenko E., Volkov V., Volkov A., Barbieri G. // Fuel Processing Technology. 2020. V. 210. № 106550.
  12. Atlaskin A.A., Petukhov A.N., Stepakova A.N., Tsivkovsky N.S., Kryuchkov S.S., Smorodin K.A., Moiseenko I.S., Atlaskina M.E., Suvorov S.S., Stepanova E.A., Vorotyntsev I.V. // Membranes. 2023. V. 13. I. 3. P. 270.
  13. Yang X., Duke M., Zhang J., Li J. De // Separation and Purification Technology. 2019. V. 224. P. 121–131.
  14. Maarefian M., Bandehali S., Azami S., Sanaeepur H., Moghadassi A. // International J. Energy Research. 2019. V. 43. I. 14. P. 8217–8229.
  15. Trubyanov M.M., Mochalov G.M., Suvorov S.S., Puzanov E.S., Petukhov A.N., Vorotyntsev I.V., Vorotyntsev V.M. // J. Chromatography A. 2018. V. 1560. P. 71–77.
  16. Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A.V., Vorotyntsev A.V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering J. 2020. P. 127726.
  17. Grushevenko E.A., Borisov I.L., Bakhtin D.S., Bondarenko G.N., Levin I.S., Volkov A.V. // Reactive and Functional Polymers. 2019. V. 134. P. 156–165.
  18. Zhmakin V., Shalygin M., Khotimskiy V., Matson S., Teplyakov V. // Separation and Purification Technology. 2019. V. 212. P. 877–886.
  19. Ovcharova A., Vasilevsky V., Borisov I., Bazhenov S., Volkov A., Bildyukevich A., Volkov V. // Separation and Purification Technology. 2017. V. 183. P. 162–172.
  20. Anselmi H., Mirgaux O., Bounaceur R., Patisson F. // Chemical Engineering & Technology. 2019. V. 42. I. 4. P. 797–804.
  21. Lin H., Freeman B.D. // J. Membrane Science. 2004. V. 239. I. 1. P. 105–117.
  22. Kim J.H., Lee Y.M. // J. Membrane Science. 2001. V. 193. I. 2. P. 209–225.
  23. Deng L., Hägg M.B. // International J. Greenhouse Gas Control. 2010. V. 4. I. 4. P. 638–646.
  24. Deng L., Kim T.J., Hägg M.B. // J. Membrane Science. 2009. V. 340. I. 1–2. P. 154–163.
  25. Houde A.Y., Krishnakumar B., Charati S.G., Stern S.A., Wiley J. // J. Applied Polymer Science. 1996. V. 62. I. 13. P. 2181–2192.
  26. Daham Wiheeb A., Mun A., Karim E.A., Mohammed T.E., Othman R. // Diyala J. Engineering Sciences. 2015. P. 846–854.
  27. Niknejad S.M.S., Savoji H., Pourafshari Chenar M., Soltanieh M. // International J. Environmental Science and Technology. 2017. V. 14. I. 2. P. 375–384.
  28. Orme C.J., Stewart F.F. // J. Membrane Science. 2005. V. 253. I. 1–2. P. 243–249.
  29. Makhloufi C., Roizard D., Favre E. // J. Membrane Science. 2013. V. 441. P. 63–72.
  30. Vorotyntsev I.V., Shablykin D.N., Drozdov P.N., Trubyanov M.M., Petukhov A.N., Battalov S.V. // Petroleum Chemistry. 2017. V. 57. I. 2. P. 172–181.
  31. Modigell M., Schumacher M., Teplyakov V.V., Zenkevich V.B. // Desalination. 2008. V. 224. I. 1–3. P. 186–190.
  32. Platé N.A., Bokarev A.K., Kaliuzhnyi N.E., Litvinova E.G., Khotimskii V.S., Volkov V.V., Yampol’skii Yu.P. // J. Membrane Science. 1991. V. 60. I. 1. P. 13–24.
  33. Vorotyntsev I.V., Drozdov P.N., Karyakin N.V. // Inorganic Materials. 2006. V. 42. I. 3. P. 231–235.
  34. Makhloufi C., Belaissaoui B., Roizard D., Favre E. // Procedia Engineering. 2012. V. 44. P. 143–146.
  35. Phillip W.A., Martono E., Chen L., Hillmyer M.A., Cussler E.L. // J. Membrane Science. 2009. V. 337. I. 1. P. 39–46.
  36. Barrer R.M., Barrie J.A., Slater J. // J. Polymer Science. 1958. V. 27. I. 115. P. 177–197.
  37. GitHub – CCSI-Toolset/membrane_model: Membrane Separation Model: Updated hollow fiber membrane model and system example for carbon capture., (n.d.). https://github.com/CCSI-Toolset/membrane_model.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (602KB)
3.

下载 (394KB)
4.

下载 (11KB)
5.

下载 (147KB)
6.

下载 (81KB)
7.

下载 (77KB)
8.

下载 (65KB)
9.

下载 (70KB)

版权所有 © А.А. Атласкин, С.С. Крючков, А.Н. Степакова, И.С. Моисеенко, Н.С. Цивковский, К.А. Смородин, А.Н. Петухов, М.Е. Атласкина, И.В. Воротынцев, 2023

##common.cookie##