Gas Transport Properties of Vinylidene Fluoride-Tetrafluoroethylene Copolymers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the content of tetrafluoroethylene (TFE) groups on the gas transport properties of vinylidene fluoride (VDF) and tetrafluoroethylene copolymers has been studied. Experimental values of the permeability coefficients P and diffusion coefficients D for gases H2, He, N2, O2, CO2, as well as lower hydrocarbons CH4, C2H4 and C2H6 were measured and their solubility coefficients S were calculated. The values of the solubility coefficients of CO2 and C2H4 were found to deviate from the linear correlation of lg S on the Lennard-Jones potential. An explanation of this effect was proposed based on facilitated transport models. It was demonstrated that an increase in the content of TFE groups leads to a significant increase in the permeability coefficients of the penetrants studied mainly due to an increase in their diffusion coefficients. So, the permeability coefficient of helium and hydrogen increases approximately in 2.5 times, for carbon dioxide in 3 times, for argon, oxygen, methane and ethylene in 3.5 times, and for nitrogen and ethane in 4.4 times, respectively. These gas separation parameters in combination with good film-forming properties and commercial availability allows us to consider the studied VDF-TFE copolymers as promising materials for the fabrication of composite gas separation membranes.

Sobre autores

A. Alentiev

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Autor responsável pela correspondência
Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

R. Nikiforov

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

I. Levin

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

D. Tsarev

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

V. Ryzhikh

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

D. Syrtsova

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

N. Belov

Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences

Email: alentiev@ips.ac.ru
Russia, 119991, Moscow, Leninskii Prospect, 29

Bibliografia

  1. Михайлин Ю.А. // Термоустойчивые Полимеры и Полимерные Материалы; Профессия: Санкт-Петербург, 2006.
  2. Каргин В.А., Кабанов В.А. // Энциклопедия полимеров; Энциклопедии. Словари. Справочники; Советская энциклопедия: Москва, 1972. V. 1.
  3. Каргин В.А., Кабанов В.А. // Энциклопедия полимеров; Энциклопедии. Словари. Справочники; Советская энциклопедия: Москва, 1977. V. 3.
  4. Мулдер М. // Введение в мембранную технологию. Мир: Москва, 1999.
  5. McKeen L. // Permeability Properties of Plastics and Elastomers, Fourth Edition.; Elsevier William Andrew: Amsterdam; Boston, 2017.
  6. Логинов Б.А., Виллемсон А.Л., Бузник В.М. // Российские фторполимеры: история, технологии, перспективы; [б. и.]: Москва, 2013.
  7. ГaлoПoлимep https://halopolymer.ru/(accessed 2023-06-30).
  8. Фтopoплacт-2M https://halopolymer.ru/upload/ iblock/0b7/kmxymyfdld8b5ckokp0hn02jh3igpd8f.pdf (accessed 2023-06-30).
  9. Фтopoплacт-42 https://halopolymer.ru/upload/ iblock/874/jknjk53syfhehg9i28lgnsprvbigip4f.pdf (accessed 2023-06-30).
  10. Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. № 5. P. 1126–1128.
  11. Ruland W. // Acta Cryst. 1961. V. 14. № 11. P. 1180–1185.
  12. Yampolskii Yu., Belov N., Alentiev A. // J. Membrane Science. 2020. V. 598. P. 117779.
  13. Wu A.X., Drayton J.A., Smith Z.P. // AIChE J. 2019. V. 65. № 12. P. e16700.
  14. Alentiev A.Y., Ryzhikh V.E., Syrtsova D.A., Belov N.A. // Uspekhi Khimii. 2023. V. 92. № 6. P. RCR5083.
  15. Teplyakov V.V., Durgaryan S.G. // Vysokomolekularnye Soedineniya A. 1984. V. 26. № 7. P. 1498–1505.
  16. Teplyakov V., Meares P. // Gas Separation & Purification. 1990. V. 4. № 2. P. 66–74.
  17. Erdni-Goryaev E.M., Alentiev A.Yu., Bondarenko G.N., Yaroslavtsev A.B., Safronova E.Yu., Yampolskii Yu.P. // Pet. Chem. 2015. V. 55. № 9. P. 693–702.
  18. Алентьев А.Ю. // Бутлеров. сооб. 2016. Т. 48. № 12. C. 60–64.
  19. Alentiev D.A., Nikiforov R.Yu., Rudakova M.A., Zarezin D.P., Topchiy M.A., Asachenko A.F., Alentiev A.Yu., Bolshchikov B.D., Belov N.A., Finkelshtein E.Sh., Bermeshev M.V. // J. Membrane Science. 2022. V. 648. P. 120340.
  20. Abraham M.H., Gola J.M.R., Cometto-Muniz J.E., Cain W.S. // J. Chem. Soc., Perkin Trans. 2000. V. 2. № 10. P. 2067–2070.
  21. Grate J.W., Abraham M.H. // Sensors and Actuators B: Chemical. 1991. V. 3. № 2. P. 85–111.
  22. Abraham M.H., Whiting G.S., Doherty R.M., Shuely W.J. // J. Chromatography A. 1991. V. 587. № 2. P. 213–228.
  23. Strickland S., Ocon L., Zhang A., Wang S., Eddula S., Liu G., Tirumala P., Huang J., Dai J., Jiang C., Acree W.E., Abraham M.H. // Physics and Chemistry of Liquids. 2021. V. 59. № 2. P. 181–195.
  24. Wilson A., Tian A., Dabadge N., Acree W.E., Varfolomeev M.A., Rakipov I.T., Arkhipova S.M., Abraham M.H. // Struct Chem. 2013. V. 24. № 6. P. 1841–1853.
  25. ACD/Percepta ABSOLV Database.
  26. Kochervinskii V.V. // Polym. Sci. Ser. C. 2008. V. 50. № 1. P. 93–121.
  27. Ruan L., Yao X., Chang Y., Zhou L., Qin G., Zhang X. // Polymers. 2018. V. 10. № 3. P. 228.
  28. Han Y., Ho W.S.W. // J. Membrane Science. 2021. V. 628. P. 119244.
  29. Liu J., Zhang S., Jiang D., Doherty C.M., Hill A.J., Cheng C., Park H.B., Lin H. // Joule. 2019. V. 3. № 8. P. 1881–1894.
  30. Kang Y.S., Kim J.H., Won J., Kim H.S. // Solid-State Facilitated Transport Membranes for Separation of Olefins/Paraffins and Oxygen/Nitrogen. In Materials Science of Membranes for Gas and Vapor Separation; Yampolskii Y., Pinnau I., Freeman B., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2006. P. 391–410.
  31. Rea R., De Angelis M., Baschetti M. // Membranes. 2019. V. 9. № 2. P. 26.
  32. Petropoulos J.H. // Mechanisms and Theories For Sorption and Diffusion of Gases in Polymers. In Polymeric Gas Separation Membranes; Paul D.R., Yampolskii Yu.P., Eds.; CRC Press: Boca Raton, 1994. P. 17–82.
  33. Alentiev A.Yu., Yampolskii Yu.P., Shantarovich V.P., Nemser S.M., Platé N.A. // J. Membrane Science. 1997. V. 126. № 1. P. 123–132.
  34. Bondar V.I., Freeman B.D., Yampolskii Yu.P. // Macromolecules. 1999. V. 32. № 19. P. 6163–6171.
  35. Belov N., Nikiforov R., Polunin E., Pogodina Yu., Zavarzin I., Shantarovich V., Yampolskii Yu. // J. Membrane Science. 2018. V. 565. P. 112–118.
  36. Belov N.A., Zharov A.A., Shashkin A.V., Shaikh M.Q., Raetzke K., Yampolskii Yu.P. // J. Membrane Science. 2011. V. 383. № 1–2. P. 70–77.
  37. Nikiforov R., Belov N., Zharov A., Konovalova I., Shklyaruk B., Yampolskii Yu. // J. Membrane Science. 2017. V. 540. P. 129–135.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (6KB)
3.

Baixar (76KB)
4.

Baixar (44KB)
5.

Baixar (97KB)

Declaração de direitos autorais © А.Ю. Алентьев, Р.Ю. Никифоров, И.С. Левин, Д.А. Царев, В.Е. Рыжих, Д.А. Сырцова, Н.А. Белов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies