On the Influence of Counter-Ion Nature on Properties of Perfluorosulfonic Acid Membranes with Long and Short Side Chain

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this work, the study of water uptake, ionic conductivity, and Donnan potential in systems with perfluorosulfonic acid membranes in H+, Li+, Na+, and K+ forms and solutions of inorganic electrolytes is presented. The properties of the commercial Aquivion E87-05S and Nafion 212 membranes, as well as the membranes prepared from the dispersions of Nafion 212 in the solvents of different nature (N,N-dimethylformamide, 1‑methyl-2-pyrrolidone, isopropyl alcohol–water mixtures in volume ratio of 80–20) were investigated. The influence of the number of functional groups, the length of the side chains of the polymer macromolecules, and the polymer morphology in the membranes on their equilibrium and transport properties depending on the counter-ion nature was revealed. The effect of the relaxation and electrophoretic factors on the alkali metal ion transfer through the system of pores and channels of the perfluorosulfonic acid membranes was discussed. The slope of the concentration dependencies of the Donnan potential for all highly hydrated membranes in the H+ form was close to the Nernstian one, while the selectivity to the alkali metal ions increased for the membranes with the highest ion-exchange capacity or the lowest amount of sorbed water and diffusion permeability due to the exclusion of the co-ions from the membrane phase.

Sobre autores

A. Parshina

Voronezh State University

Autor responsável pela correspondência
Email: parshina_ann@mail.ru
Russia, 394006, Voronezh

E. Safronova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: parshina_ann@mail.ru
Russia, 119991, Moscow

A. Yelnikova

Voronezh State University

Email: parshina_ann@mail.ru
Russia, 394006, Voronezh

N. Stretton

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: parshina_ann@mail.ru
Russia, 119991, Moscow

O. Bobreshova

Voronezh State University

Email: parshina_ann@mail.ru
Russia, 394006, Voronezh

Bibliografia

  1. Алентьев А.Ю., Волков А.В., Воротынцев И.В., Максимов А.Л., Ярославцев А.Б. // Мембраны и мембранные технологии. 2021. № 5. Т. 11. С. 283. https://doi.org/10.1134/S2517751621050024
  2. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. № 3. P. 987. https://doi.org/10.1021/acs.chemrev.6b00159
  3. Yandrasits M.A., Lindell M.J., Hamrock S.J. // Curr. Opin. Electrochem. 2019. V. 18. P. 90. https://doi.org/10.1016/j.coelec.2019.10.012
  4. Makhsoos A., Kandidayeni M., Pollet B.G., Boulon L. // Int. J. Hydrogen Energy. 2023. V. 48. № 41. P. 15341. https://doi.org/10.1016/j.ijhydene.2023.01.048
  5. Maiti T.K., Singh J., Dixit P., Majhi J., Bhushan S., Bandyopadhyay A., Chattopadhyay S. // Chemical Engineering Journal Advances. 2022. V. 12. P. 100372. https://doi.org/10.1016/j.ceja.2022.100372
  6. Falina I., Loza N., Loza S., Titskaya E., Romanyuk N. // Membranes. 2021. V. 11. № 3. P. 227. https://doi.org/10.3390/membranes11030227
  7. Voropaeva D.Yu., Safronova E.Yu., Novikova S.A., Yaroslavtsev A.B. // Mendeleev Commun. 2022. V. 32. № 3. P. 287. https://doi.org/10.1016/J.MENCOM.2022.05.001
  8. Воропаева Д.Ю., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. Т. 12. № 4. С. 315. https://doi.org/10.1134/S2517751622040102
  9. Parasuraman A., Lim T.M., Menictas C., Skyllas-Kazacos M. // Electrochim. Acta. 2013. V. 101. P. 27. https://doi.org/10.1016/J.ELECTACTA.2012.09.067
  10. Noh H.B., Won M.S., Shim Y.B. // Biosensors and Bioelectronics. 2014. V. 61. P. 554. https://doi.org/10.1016/J.BIOS.2014.06.002
  11. Yu L., Zhang Q., Yang B., Xu Q., Xu Q., Hu X. // Sens. Actuators B Chem. 2018. V. 259. P. 540. https://doi.org/10.1016/J.SNB.2017.12.103
  12. Maciak E. // Sensors. 2019. V. 19. № 3. P. 629. https://doi.org/10.3390/s19030629
  13. Прихно И.А., Сафронова Е.Ю., Стенина И.А., Юрова П.А., Ярославцев А.Б. // Мембраны и Мембранные Технологии. 2020. Т. 10. № 4. С. 273. https://doi.org/10.1134/S2517751620040095
  14. Zhang G., Yang G., Shen Q., Li S., Li Z., Liao J., Jiang Z., Wang H., Zhang H., Ye W. // J. Power Sources. 2022. V. 542. P. 231740. https://doi.org/10.1016/j.jpowsour.2022.231740
  15. Okada T., Møller-Holst S., Gorseth O., Kjelstrup S. // J. Electroanal. Chem. 1998. V. 442. № 1–2. P. 137. https://doi.org/10.1016/S0022-0728(97)00499-3
  16. Tai C.C., Chen C.L., Liu C.W. // Int. J. Hydrog. Energy. 2017. V. 42. № 7. P. 3981. https://doi.org/10.1016/j.ijhydene.2016.11.047
  17. Yan W.M. Chu H.S., Liu Y.L., Chen F., Jang J.H. // Int. J. Hydrog. Energy. 2011. V. 36. № 9. P. 5435. https://doi.org/10.1016/j.ijhydene.2011.01.158
  18. Апель П.Ю., Велизаров С., Волков А.В., Елисеева Т.В., Никоненко В.В., Паршина А.В., Письменская Н.Д., Попов К.И., Ярославцев А.Б. // Мембраны и мембранные технологии. 2022. Т. 12. № 2. С. 81.
  19. Vijayakumar M., Bhuvaneswari M.S., Nachimuthu P., Schwenzer B., Kim S., Yang Z., Liu Z., Graff G.L., Thevuthasan S., Hu J. // J. Membr. Sci. 2011. V. 366. № 1–2. P. 325. https://doi.org/10.1016/j.memsci.2010.10.018
  20. Vijayakumar M., Burton S.D., Huang C., Li L., Yang Z., Graff G.L., Liu J., Hu J., Skyllas-Kazacos M. // J. Power Sources. 2010. V. 95. № 22. P. 709. https://doi.org/10.1016/j.jpowsour.2010.05.008
  21. Crothers A.R., Radke C.J., Weber A.Z. // J. Phys. Chem. C. 2017. V. 121. № 51. P. 28262. https://doi.org/10.1021/acs.jpcc.7b07360
  22. Mabuchi T., Tokumasu T. // J. Phys. Chem. B. 2018. V. 122. № 22. P. 5922. https://doi.org/10.1021/acs.jpcb.8b02318
  23. Shi S., Weber A.Z., Kusoglu A. // Electrochim Acta. 2016. V. 220. № 517. https://doi.org/10.1016/J.ELECTACTA.2016.10.096
  24. Wu L., Luo T., Yang X., Zhao H., Wang X., Zhang Z. // Sep. Purif.Technol. 2023. V. 316. P. 123816. https://doi.org/10.1016/j.seppur.2023.123816
  25. Le X.T. // J. Membr. Sci. 2012. V. 397–398. P. 66. https://doi.org/10.1016/j.memsci.2012.01.011
  26. Curtin D.E., Lousenberg R.D., Henry T.J., Tangeman P.C., Tisack M.E. // J. Power Sources. 2004. V. 131. P. 41. https://www.sciencedirect.com/science/article/pii/ S0378775304000175
  27. Паршина А.В., Рыжкова Е.А., Сафронова Е.Ю., Сафронов Д.В., Лысова А.А., Бобрешова О.В., Ярославцев А.Б. // Мембраны и мембранные технологии. 2015. Т. 5. № 4. С. 304. https://doi.org/10.1134/S0965544115100175
  28. Subianto S., Pica M., Casciola M., Cojocaru P., Merlo L., Hards G., Jones D.J. // J. Power Sources. 2013. V. 233. P. 216. https://doi.org/10.1016/j.jpowsour.2012.12.121
  29. Yue M., Jemei S., Zerhouni N., Gouriveau R. // Renew. Energ. 2021 V. 179. P. 2277. https://doi.org/10.1016/j.renene.2021.08.045
  30. Moore R.B., Martin C.R. // Anal. Chem. 1986. V. 58. P. 2569. https://doi.org/10.1021/ac00125a046
  31. Welch C., Labouriau A., Hjelm R., Orler B., Johnston C., Kim Y.S. // ACS Macro Lett. 2012. V. 1. P. 1403. https://doi.org/10.1021/mz3005204
  32. Loppinet B., Gebel G., Williams C.E. // J. Phys. Chem. B. 1997. V. 101. P. 1884. https://doi.org/10.1021/jp9623047
  33. Berlinger S.A., Dudenas P.J., Bird A., Chen X., Freychet G., McCloskey B.D., Kusoglu A., Weber A.Z. // ACS Appl. Polym. Mater. 2020. V.2. P. 5824. https://doi.org/10.1021/acsapm.0c01076
  34. Collette F.M., Thominette F., Mendil-Jakani H., Gebel G. // J. Memb. Sci. 2013. V. 435. P. 242. https://doi.org/10.1016/j.memsci.2013.02.002
  35. Tarokh A., Karan K., Ponnurangam S., Atomistic M.D. // Macromolecules. 2020. V. 53. № 1. P.288. https://doi.org/10.1021/acs.macromol.9b01663
  36. Lin H.-L., Yu T.L., Huang C.-H., Lin T.-L. // J. Polym. Sci. B Polym. Phys. 2005. V. 43. P. 3044. https://doi.org/10.1002/polb.20599
  37. Kim Y.S., Welch C.F., Hjelm R.P, Mack N.H., Labouriau A., Orler E.B. // Macromolecules. 2015. V. 48. P. 2161. https://doi.org/10.1021/ma502538k
  38. Safronova E.Yu., Voropaeva D.Yu., Safronov D.V., Stretton N., Parshina A.V., Yaroslavtsev A.B. // Membranes. 2023. V. 13. № 1. P. 13. https://doi.org/10.3390/MEMBRANES13010013
  39. Skulimowska A., Dupont M., Zaton M., Sunde S., Merlo L., Jones D.J., Rozière J. // Int. J. Hydrogen energy. 2014. V. 39. P. 6307. https://doi.org/10.1016/j.ijhydene.2014.02.082
  40. Parshina A., Kolganova T., Safronova E., Osipov A., Lapshina E., Yelnikova A., Bobreshova O., Yaroslavtsev A. // Membranes. 2019. V. 9. № 11. P. 142. https://doi.org/10.3390/membranes9110142
  41. Stenina I.A., Yaroslavtsev A.B. // Membranes. 2021. V. 11. № 3. P. 198. https://doi.org/10.3390/membranes11030198
  42. Стенина И.А., Ярославцев А.Б. // Неорганические материалы. 2017. Т. 53. № 3. С. 241. https://doi.org/10.1134/S0020168517030104
  43. Suresh G., Scindia Y., Pandey A., Goswami A. // J. Memb. Sci. 2005. V. 250. № 1–2. P. 39. https://doi.org/10.1016/j.memsci.2004.10.013
  44. Agmon N. // Chem. Phys. Lett. 1995. V. 244. № 5–6. P. 456. https://doi.org/10.1016/0009-2614(95)00905-J
  45. Legras M., Hirata Y., Nguyen Q.T., Langevin D., Métayer M. // 2002. V. 147. № 1–3. P. 351. https://doi.org/10.1016/S0011-9164(02)00608-2
  46. Сафронова Е.Ю., Осипов А.К., Ярославцев А.Б. // Мембраны и Мембранные Технологии. 2018. Т. 8. № 1. С. 34. (Safronova E.Yu., Osipov A.K., Yaroslavtsev A.B. // Pet Chem. 2018 V. 58. № 2. P. 130.) https://doi.org/10.1134/S0965544118020044

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (23KB)
3.

Baixar (718KB)
4.

Baixar (43KB)
5.

Baixar (55KB)
6.

Baixar (98KB)

Declaração de direitos autorais © А.В. Паршина, Е.Ю. Сафронова, А.С. Ельникова, Н. Стреттон, О.В. Бобрешова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies