Steam Conversion of Ethane and Methane–Ethane Mixtures in Membrane Reactor with a Foil from Pd–Ru Alloy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features of steam conversion of ethane and methane-ethane mixtures containing 5, 10 and 15% ethane in a membrane reactor with a 30 μm thick Pd–Ru foil at temperatures of 1800 and 3600 h–1 and steam/feed rations of 3 and 5 have been investigated. Comparative experiments with “non-membrane” reaction have shown that in the membrane reactor the feedstock conversion to form H2 and CO2 increases and ethane hydrocracking decreases. Increasing the rate of H2 recovery through the membrane by permeate evacuation leads to an increase in the yield of H2 and CO2. With a decrease in the steam/feed ratio from 5 to 3, the ethane hydrocracking and the rate of carbon deposits formation increases. Optimal conditions for steam conversion of ethane and methane-ethane mixtures are T = 773 K, feed space velocity of 1800 h–1 and steam/feed ratio of 5. The established regularities are similar to those obtained earlier for other types of raw materials (mixtures of methane with propane, propane, n-butane, a mixture simulating the average composition of associated petroleum gas) in this membrane reactor.

Sobre autores

L. Didenko

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ludi@icp.ac.ru
Russia, 142432, Moscow oblast, Chernogolovka

V. Babak

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: ludi@icp.ac.ru
Russia, 142432, Moscow oblast, Chernogolovka

L. Sementsova

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: ludi@icp.ac.ru
Russia, 142432, Moscow oblast, Chernogolovka

T. Dorofeeva

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: ludi@icp.ac.ru
Russia, 142432, Moscow oblast, Chernogolovka

P. Chizhov

Institute of Problems of Chemical Physics, Russian Academy of Sciences

Email: ludi@icp.ac.ru
Russia, 142432, Moscow oblast, Chernogolovka

S. Gorbunov

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: ludi@icp.ac.ru
Russia, 119334, Moscow

Bibliografia

  1. Филиппов С.П., Ярославцев А.Б. // Успехи химии. 2021. Т. 90. № 6. С. 627. (Filippov S.P., Yaroslavtsev A.B. // Russian Chemical Reviews. 2021. V. 90. № 6. P. 627).
  2. Dincer I., Acar C. // Int. J. Hydrogen Energy. 2015. V. 40. P. 11094.
  3. Грязнов В.М. // Докл. АН СССР. 1969. Т. 189. С. 794.
  4. Gryaznov V.M. // Platinum Met. Rev. 1986. V. 30. P. 68.
  5. Грязнов В.М., Ермилова М.М., Орехова Н.В., Скакунова Е.В. // Изв. АН СССР. Сер. Хим. 1988. № 4. С. 750. (Gryaznov V.M., Ermilova M.M., Orekhova N.V., Skakunova E.V. // Russ.Chem. Bull., International Edition. 1988. V. 37. P. 637).
  6. Gryaznov V.M. // Sep. Purif. Rev. 2000. V. 29. P. 171.
  7. Habib M.A., Harale A., Paglieri S., Alrashed F.S., Alsayoud A., Rao M.V., Nemitallah M.A., Hossain S., Hussien M., Ali A., Haque M.A., Abuelyamen A., Shakeel M.R., Mokheimer E.M.A., Ben-Mansour R. // Energy Fuels. 2021. V. 35. № 7. P. 5558.
  8. Jokar S.M., Farokhnia A., Tavakolian M., Pejman M., Parvasi P., Javanmardi J., Zare F., Clara Gonçalves M., Basile A. // Int. J. Hydrogen Energy. 2022. https://doi.org/10.1016/
  9. Anzelmo B., Wilcox J., Liguori S. // J. Membr. Sci. 2018. V. 565. P. 25.
  10. Anzelmo B., Wilcox J., Liguori S. // J. Membr. Sci. 2018. V. 568. P. 113–120.
  11. Shirasaki Y., Tsuneki T., Ota Y., Yasuda I., Tachibana S., Nakajima H., Kobayashi K. // Int. J. Hydrogen Energy. 2009. V. 34. P. 4482.
  12. Kim C.-H., Han J.-Y., Kim S., Lee B., Lim H., Lee K.-Y., Ryi S.-K. // Int. J. Hydrogen Energy. 2018. V. 43. № 15. P. 7684.
  13. Диденко Л.П., Бабак В.Н., Семенцова Л.А., Дорофеева Т.В., Чижов П.Е., Горбунов С.В. // Мембраны и мембранные технологии. 2021. Т. 11. № 5. С. 336. (Didenko L.P., Babak V.N., Sementsova L.A., Dorofeeva T.V., Chizhov P.E., and Gorbunov S.V. // Membranes and Membrane Technologies. 2021. V. 3. № 5. P. 302).
  14. Angeli S.D., Pilitsis F.G., Lemonidou A.A. // Catalysis Today. 2015. V. 242. P. 119.
  15. Veranitisagul C., Koonsaeng N., Laosiripojana N., Laobuthee A. // J. Ind. Eng. Chem. 2012. V. 18. P. 898.
  16. Li S., Gong J. // Chem. Soc. Rev. 2014. V. 43. P. 7245.
  17. Jeong S., Kim S., Lee B., Ryi S.-K., Lim H. // Int. J. Hydrogen Energy. 2018. V. 43. P. 7693.
  18. Бурханов Г.С., Рошан Н.Р., Горбунов С.В., Касьянов В.С., Кутербеков К.А., Бекмырза К.Ж., Мерзадинова Г.Т. // Металлы. 2021. № 2. С. 71.
  19. Бабак В.Н., Диденко Л.П., Семенцова Л.А., Квурт Ю.П. // Теоретические основы химической технологии. 2022. Т.56. № 3. С. 282. (Babak V.N., Didenko L.P., Sementsova L.A., Kvurt J.P. // Theoretical foundations of chemical engineering. 2022. V. 56. № 3. P. 279).
  20. Диденко Л.П., Семенцова Л.А., Бабак В.Н., Чижов П.Е., Дорофеева Т.В., Квурт Ю.П. // Мембраны и мембранные технологии. 2020. Т. 10. № 2. С. 99. (Didenko L.P., Babak V.N., Sementsova L.A., Chizhov P.E., Dorofeeva T.V., Kvurt J.P. // Membranes and Membrane Technologies. 2020. V. 2. № 2. P. 85.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (102KB)
4.

Baixar (91KB)
5.

Baixar (70KB)
6.

Baixar (75KB)
7.

Baixar (48KB)

Declaração de direitos autorais © Л.П. Диденко, В.Н. Бабак, Л.А. Семенцова, Т.В. Дорофеева, П.Е. Чижов, С.В. Горбунов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies