Ceramic substrates for filtration membranes based on the dispersed fly ash microspheres

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A technique has been proposed for producing ceramic substrates for filtration membranes based on a narrow fraction of dispersed fly ash microspheres using cold uniaxial pressing followed by high-temperature sintering. It is shown that increasing the sintering temperature from 1000 to 1150°C leads to a decrease in open porosity from 40 to 24%, a decrease in the average pore size from 1.60 to 0.34 μm, and an increase in the compressive strength from 9.5 to 159 MPa. The obtained substrates are characterized by liquid permeability values of 1210, 310, 240, 170 l m–2 h–1 bar–1 for sintering temperatures of 1000, 1050, 1100, 1150°С, respectively. Experiments on filtration of aqueous suspensions of dispersed microspheres (dav = 2.5 µm) and microsilica (dav = 1.9 µm) through a substrate with a sintering temperature of 1150°C showed the rejection close to 100%. The proposed methodology for using ash waste in the production of membrane materials contributes to the development of technologies for the integrated processing of thermal energy waste.

Авторлар туралы

E. Fomenko

Institute of Chemistry and Chemical Technology SB RAS

Хат алмасуға жауапты Автор.
Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 24, Krasnoyarsk, 660036

G. V. Akimochkina

Institute of Chemistry and Chemical Technology SB RAS

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 24, Krasnoyarsk, 660036

A. Anshits

Institute of Chemistry and Chemical Technology SB RAS

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 24, Krasnoyarsk, 660036

N. Fadeeva

Institute of Chemistry and Chemical Technology SB RAS; Institute of Computational Modelling SB RAS

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 24, Krasnoyarsk, 660036; Akademgorodok 50, bld. 44, Krasnoyarsk, 660036

I. Kharchenko

Institute of Computational Modelling SB RAS

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 44, Krasnoyarsk, 660036

E. Elsuf’ev

Institute of Computational Modelling SB RAS; Siberian Federal University

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 44, Krasnoyarsk, 660036; Svobodny ave., 79., Krasnoyarsk, 660041

K. Shabanova

Kirensky Institute of Physics SB RAS

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036

A. Maksimova

Institute of Computational Modelling SB RAS; Siberian Federal University

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 44, Krasnoyarsk, 660036; Svobodny ave., 79., Krasnoyarsk, 660041

I. Ryzhkov

Institute of Computational Modelling SB RAS; Siberian Federal University

Email: rii@icm.krasn.ru
Ресей, Akademgorodok 50, bld. 44, Krasnoyarsk, 660036; Svobodny ave., 79., Krasnoyarsk, 660041

Әдебиет тізімі

  1. Strathmann H. Introduction to membrane science and technology. Wiley–VCH, Weinheim. Germany. 2011.
  2. Baker R.W. Membrane technology and applications. England: John Wiley & Sons, Chichester. 2004. 538 р.
  3. Warsinger D.M., Chakraborty S., et al. A review of polymeric membranes and processes for potable water reuse. Progress in Polymer Science, 2018. V. 81, P. 209–237.
  4. Li K. Ceramic membranes for separation and reaction. John Wiley & Sons, Chichester, England, 2007.
  5. Arumugham T., Kaleekkal N.J., Gopal S., Nambikkattu J., K.R., Aboulella A.M., Wickramasinghe S.R., Banat F. Recent developments in porous ceramic membranes for wastewater treatment and desalination: a review. J. Environmental Management, 2021. V. 293, 112925.
  6. Gitis V., Rothenberg G. Ceramic membranes: new opportunities and practical applications. Wiley-VCH, Weinheim, Germany, 2016.
  7. Abdullayev A., Bekheet M.F., Hanaor D.A.H., Gurlo A. Materials and applications for low-cost ceramic membranes. Membranes 2019, 9, 105.
  8. Almandoz M.C., Pagliero C.L., Ochoa N.A., Marchese J. Composite ceramic membranes from natural alumino silicates for microfiltration applications. Ceramics International, 2015. V. 41. P. 5621–5633.
  9. Гармаш И.П., Крючков Ю.Н., Павликов В.Н. Керамические мембраны для ультра- и нанофильтрации // Стекло и керамика, 1995. Т. 6. С. 19–22.
  10. Benfer S., Arki P., Tomandl G. Ceramic membranes for filtration applications – preparation and characterization. Adv. Eng. Materials, 2004. V. 6 (7), P. 495–500.
  11. Каграманов Г.Г., Назаров В.В., Лукин Е.С., Першикова Е.М. Микрофильтрационные мембраны с селективным слоем на основе диоксида циркония. Стекло и керамика. 2001. Т. 74, № 7. С.
  12. Иванец А.И., Агабеков В.Е. Микрофильтрационные керамические мембраны на основе природного диоксида кремния. Мембраны и мембранные технологии, 2017. Т. 7, № 1. С. 3–13.
  13. Иванец А.И. Получение микрофильтрационных керамических мембран. Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. 2021. Т. 57, № 1. С. 25–32.
  14. Ратько А.И., Иванец А.И., Сахар И.О., Д.Ю., Торопова В.В., Радкевич А.В. Задерживающая способность керамических нанофильтрационных мембран по отношению к ионам трехвалентного железа // Физикохимия поверхности и защита материалов, 2012. Т. 48, № 5. C. 470–473.
  15. Ivanets А.I., Azarova Т.А., AgabekovV.E.et al. Preparation and properties of microfiltration membranes based on natural crystalline SiO2. Ceramics International, 2014. V. 40. P. 12343–12351.
  16. Majouli A., Younssi S.A., Tahiri S., Albizane A., Loukili H., Belhaj M. Characterization of flat membrane support elaborated from local Moroccan Perlite. Desalination, 2011. V. 277, P. 61–66.
  17. Majouli A., Tahiri S., Younssi S.A., Loukili H., Albizane A. Elaboration of new tubular ceramic membrane from local Moroccan Perlite for microfiltration process. Application to treatment of industrial wastewaters. Ceramics International, 2012. V. 38, P. 4295–4303.
  18. Saja S., Bouazizi A., Achiou B., Ouammou M., Albizane A., Bennazha J., Younssi A. Elaboration and characterization of low-cost ceramic membrane made from natural Moroccan perlite for treatment of industrial wastewater. Journal of environmental chemical engineering. 2018. V. 6. №1. Р. 451–458.
  19. Фадеева Н.П., Павлов М.В., Харченко И.А., Симунин М.М., Шабанова К.А., Павлов В.Ф., Рыжков И.И. Высокопрочные керамические подложки на основе перлита и пеносиликатов для фильтрационных мембран. Мембраны и мембранные технологии, 2022. Т. 12, № 3, с. 192–199.
  20. Chihi R., Blidi I., Trabelsi-Ayadi M., F. Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay. C. R. Chimie, 2019. V. 22, P. 188–197.
  21. Meghnani R., Kumar M., Pugazhenthi G., Dhakshinamoorthy V. Synthesis of ceramic membrane using inexpensive precursors and evaluation of its biocompatibility for hemofiltration application. Separation and Purification Technology, 2021. V. 256, 117814.
  22. Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 2015, V. 141, P. 105–121.
  23. Ahmaruzzaman M. A review on the utilization of fly ash. Progress in Energy and Combustion Science, 2010. V. 36 (3), 327–363.
  24. Blissett R.S., Rowson N.A. A review of the multi-component utilization of coal fly ash. Fuel, 2012. V. 97, P. 1–23.
  25. Moreno N., Querol X., Andrés J.M., Stanton K., Towler M., Nugteren H., Janssen-Jurkovicová M., Jones R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 2005, Vol. 84 (11), P. 1351–1363.
  26. Thangavel P., Park D., Lee Y.C. Recent insights into particulate matter (PM2.5) – mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, V. 19, 7511.
  27. Wang S., Zhang C., Chen J. Utilization of coal fly ash for the production of glass-ceramics with unique performances: A brief review. Journal of Materials Science and Technology, 2014. V. 30 (12), P. 1208–1212.
  28. Choo T.F., Mohd Salleh M.A., Kok K.Y., Matori K.A., Abdul Rashid S. A Study on the utilization of coal fly ash derived grog in clay ceramics. Materials, 2020. V. 13, 5218.
  29. Wei Z., Hou J., Zhu Z. High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports. Journal of Alloys and Compounds 2016. V. 683, P. 474-480.
  30. Huang J., Chen H., Yang J., Zhou T., Zhang H. Effects of particle size on microstructure and mechanical strength of a fly ash based ceramic membrane. Ceramics International, 2023. V. 49. P. 15655–15664.
  31. Fang J., Qin G., Wei W., Zhao X. Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Separation and Purification Technology, 2011. V. 80, P. 585–591.
  32. Fang J., Qin G., Wei W., Zhao X., Jiang L. Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalination, 2013. V. 311, P. 113–126.
  33. Zou D., Chen X., Drioli E., Qiu M., Fan Y. Facile mixing process to fabricate fly-ash-enhanced alumina-based membrane supports for industrial microfiltration applications. Ind. Eng. Chem. Res. 2019, V. 58. 8712−8723.
  34. Kushnerova O.A., Akimochkina G.V., Fomenko E.V., Rabchevskii E.V., Anshits A.G. Single-stage aerodynamic separation of fly ash produced after pulverized combustion of coal from the Ekibastuz basin. Solid Fuel Chemistry, 2018. V. 52, P. 188–200.
  35. Fomenko E.V., Anshits N.N., Kushnerova O.A., Akimochkina G.V., Kukhtetskiy S.V., Anshits A.G. Separation of nonmagnetic fine narrow fractions of PM10 from coal fly ash and their characteristics and mineral precursors. Energy Fuels, 2019. V. 33 (4), P. 3584–3593.
  36. ГОСТ 5382-2019 Цементы и материалы цементного производства. М., 2019.
  37. Fomenko E., Anshits N., Solovyov L., Mikhaylova O.A., Anshits A.G. Composition and morphology of fly ash cenospheres produced from the combustion of kuznetsk coal. EnergyFuels 2013, V. 27, P. 5440–5448.
  38. DIN 51007-2019. Thermal analysis – Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) – General Principles.
  39. ГОСТ Р 55661-2013. Топливо твердое минеральное. Определение зольности. М., 2014.
  40. Fomenko E.V., Anshits N.N., Solovyov L.A., Knyazev Y.V., Semenov S.V., Bayukov O.A., Anshits A.G. Magnetic fractions of PM2.5, PM2.5–10, and PM10 from coal fly ash as environmental pollutants. ACS Omega, 2021. V. 6 (30), P. 20076–20085.
  41. Glass S.J., Ewsuk K.G. Ceramic Powder Compaction. MRS Bulletin, 1997. V. 22 (12), P. 24–28.
  42. ГОСТ 7025-91. Кирпич и камни керамические и силикатные. М., 2006.
  43. ГОСТ 2409-2014. Огнеупоры. Метод определения кажущейся плотности, открытой и общей пористости, водопоглощения. М., 2014.
  44. ГОСТ Р 57606-2017 Композиты керамические. Метод испытания на сжатие при нормальной температуре.
  45. Zhou W., Zhang L., Wu P., Cai Y., Zhao X., Yao C. Study on permeability stability of sand-based microporous ceramic filter membrane. Materials 2019, V. 12, 2161.
  46. Esham M.I.M., Ahmad A.L., Othman M.H.D. Fabrication, optimization, and performance of a TiO2 coated bentonite membrane for produced water treatment: effect of grafting time. Membranes, 2021. V. 11, 739.
  47. Zhou W., Zhang L., Wu P., Liu Y., Cai Y., Zhaoa X. An effective method for improving the permeation flux of a ceramic membrane: Single-matrix spherical ceramic membrane. J. Hazardous Materials, 2020. V. 400, 123183.
  48. Malik N., Bulasara V.K., Basu S. Preparation of novel porous ceramic microfiltration membranes from fly ash, kaolin and dolomite mixtures. Ceramics International, 2020. V. 46, P. 6889-6898.
  49. Zou D., Qiu M., Chen X., Drioli E., Fan Y. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Separation and Purification Technology, 2019. V. 210, P. 511–520.
  50. Zou D., Fan W., Xu J., Drioli E., Chen X., Qiu M., Fan Y. One-step engineering of low-cost kaolin/fly ash ceramic membranes for efficient separation of oil-water emulsions. J. Membrane Science, 2021. V. 621, 118954.
  51. Agarwal A., Samanta A., Nandi B.K., Mandal A. Synthesis, characterization and performance studies of kaolin-fly ash-based membranes for microfiltration of oily waste water. J. Petroleum Science and Engineering, 2020. V. 194, 107475.
  52. Fan W., Zou D., Xu J., Chen X., Qiu M., Fan Y. Enhanced performance of fly ash-based supports for low-cost ceramic membranes with the addition of bauxite. Membranes, 2021, V. 11, 711.
  53. Fakhfakh S., Baklouti S., Baklouti S., Bouaziz J. Elaboration and characterisation of low cost ceramic support membrane. Advances in Applied Ceramics 2010, V. 109 (1), P. 31–38.
  54. Bouazizi A., Breida M., Karim A., Achiou B., Ouammou M., Calvao J.I., Aaddane A., Khiat K., Alami Younssi S. Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal. Ceram. Int., 2017. V. 43 (1), P. 1479–1487.
  55. Bouzerara F., Harabi A., Ghouli B., Medjemem N., Boudaira B., Condom S. Elaboration and properties of zirconia microfiltration membranes. Procedia Eng., 2012. V. 33, P. 278–284.
  56. Лебедев Д.В., Шиверский А.В., Симунин М.М., Солодовниченко В.С., Парфенов В.А., Быканова В.В., Хартов С.В., Рыжков И.И Синтез мембран на основе нановолокон оксида алюминия и исследование их ионной селективности // Мембраны и мембранные технологии. 2017. Т. 7. № 2. С. 86–98.
  57. Лебедев Д.В., Солодовниченко В.С., Симунин М.М., Рыжков И.И. Влияние электрического поля на транспорт ионов в нанопористых мембранах с проводящей поверхностью // Мембраны и мембранные технологии. 2018. Т. 8. № 3. С. 157–165.
  58. Ryzhkov I.I., Shchurkina M.A., Mikhlina E.V., Simunin M.M., Nemtsev I.V. Switchable ionic selectivity of membranes with electrically conductive surface: Theory and experiment // Electrochimica Acta, 2021. V. 375, 137970.

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>