On a class of self-affine sets on the plane given by six homotheties

Capa

Citar

Texto integral

Resumo

This paper is devoted to a class of self-affine sets on the plane determined by six homotheties. Centers of these homotheties are located at the vertices of a regular hexagon P, and the homothetic coefficients belong to the interval (0, 1). One must note that equality of homothetic coefficients is not assumed. A self-affine set on the plane is a non-empty compact subset that is invariant with respect to the considered family of homotheties. The existence and uniqueness of such a set is provided by Hutchinson’s theorem. The goal of present work is to investigate the influence of homothetic coefficients on the properties of a self-affine set. To describe the set, barycentric coordinates on the plane are introduced. The conditions are found under which the self-affine set is: a) the hexagon P; b) a Cantor set in the hexagon P. The Minkowski and the Hausdorff dimensions of the indicated sets are calculated. The conditions providing vanishing Lebesgue measure of self-affine set are obtained. Examples of self-affine sets from the considered class are presented.

Sobre autores

Andrey Bagaev

Nizhny Novgorod State Technical University n.a. R.E. Alekseev

Autor responsável pela correspondência
Email: a.v.bagaev@gmail.com
ORCID ID: 0000-0001-5155-4175

Associate Professor, Department of Applied Mathematics

Rússia, 24 Minina St., Nizhny Novgorod 603950, Russia

Bibliografia

  1. J. E. Hutchinson, "Fractals and self-similarity" , Indiana Univ. Math. J., 30:5 (1981), 713–747.
  2. R. M. Crownover, Introduction in fractals and chaos, Jones and Bartlett Publ., Boston, 1995, 350 p.
  3. K. J. Falconer, Fractal geometry: mathematical foundations and applications, Wiley, New York, 2014, 400 p.
  4. M. Hata, "On the structure of self-similar sets", Japan J. Appl. Math., 2 (1985), 381–414. DOI: https://doi.org/10.1007/BF03167083
  5. M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 p.
  6. D. Broomhead, J. Montaldi, N. Sidorov, "Golden gaskets: variations on the Sierpinski", Nonlinearity, 17:4 (2004), 1455–1480. DOI: https://doi.org/10.1088/0951-7715/17/4/017
  7. Th. Jordan, "Dimension of fat Sierpinski gaskets", Real Anal. Exchange, 31:1 (2005), 97–110.
  8. A. V. Bagaev, A. V. Kiseleva, "Attractors of systems of three iterated homotheties of the Euclidean plane", XXIX Russian Scientific and Practical Conference on Graphic Information Technologies and Systems (KOGRAF-2019): Proceedings, 2019, 136–140 (In Russ.).
  9. A. V. Bagaev, A. V. Kiseleva, "On multidimensional analogs of the Sierpinski triangle", XXVI International Scientifc and Technical Conference "Information Systems and Technologies-2020": Proceedings, 2020, 1148–1152 (In Russ.).
  10. A. V. Bagaev, A. V. Kiseleva, "On the Lebesgue measure of the attractors given by homotheties with affine independent centers", XXVI International Scientifc and Technical Conference "Information Systems and Technologies-2021": Proceedings, 2021, 945–948 (In Russ.).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bagaev A.V., 2023

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).