Group classification of nonlinear time-fractional dual-phase-lag heat equation with a small parameter
- 作者: Lukashchuk V.O.1, Lukashchuk S.Y.1
-
隶属关系:
- Ufa University of Science and Technology
- 期: 卷 27, 编号 1 (2025)
- 页面: 49-68
- 栏目: Mathematics
- ##submission.dateSubmitted##: 27.06.2025
- ##submission.dateAccepted##: 30.06.2025
- ##submission.datePublished##: 26.02.2025
- URL: https://journals.rcsi.science/2079-6900/article/view/298079
- ID: 298079
如何引用文章
全文:
详细
作者简介
Veronika Lukashchuk
Ufa University of Science and Technology
编辑信件的主要联系方式.
Email: voluks@gmail.com
ORCID iD: 0000-0002-3082-1446
Stanislav Lukashchuk
Ufa University of Science and Technology
Email: lsu@ugatu.su
ORCID iD: 0000-0001-9209-5155
参考
- L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982, 416 p.
- N. H. Ibragimov, Transformation groups applied to mathematical physics, Reidel, Dordrecht, 1985, 394 p.
- P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986, 497 p.
- CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 1, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1994, 448 p.
- CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 2, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1995, 576 p.
- CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 3, ed. N. H. Ibragimov, CRC Press, Boca Raton, FL, 1996, 560 p.
- Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of integro-differential equations: with applications in mechanics and plasma physics, Springer, Dordrecht, 2010, 305 p.
- Yu. N. Grigoriev, V. F. Kovalev, S. V. Meleshko, Symmetries of non-local equations: Theory and Applications, Nauka, Novosibirsk, 2018 (In Russ.), 436 p.
- R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, "Symmetries and group invariant solutions of fractional ordinary differential equations", Volume 2 Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Boston, 2019, 65–90 doi: 10.1515/9783110571660-004.
- R. K. Gazizov, A. A. Kasatkin, S. Yu. Lukashchuk, "Symmetries, conservation laws and group invariant solutions of fractional PDEs", Volume 2 Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Boston, 2019, 353–382 doi: 10.1515/9783110571660-016.
- V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, "Approximate symmetries", Math. USSR-Sb., 64:2 (1989), 427–441.
- V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, "Perturbation methods in group analysis", J. Soviet Math., 55:1 (1991), 1450–1490.
- V. A. Baikov, R. K. Gazizov, N. Kh. Ibragimov, "Approximate symmetries and preservation laws", Proc. Steklov Inst. Math., 200 (1993), 35–47.
- V. A. Baikov, R. K. Gazizov, N. H. Ibragimov, "Approximate groups of transformations", Differ. Equ., 29:10 (1993), 1487–1504.
- R. K. Gazizov, S. Yu. Lukashchuk, "Approximations of Fractional Differential Equations and Approximate Symmetries", IFAC-PapersOnLine, 50:1 (2017), 14022–14027. doi: 10.1016/j.ifacol.2017.08.2426.
- S. Yu. Lukashchuk, R. D. Saburova, "Approximate symmetry group classification for a nonlinear fractional filtration equation of diffusion-wave type", Nonlinear Dyn., 93:2 (2018), 295–305.
- S. Yu. Lukashchuk, "Approximate conservation laws for fractional differential equations", Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 147–159. doi: 10.1016/j.cnsns.2018.08.011.
- S. Lie, "Classification und integration von gewohnlichen differential-gleichungen
- zwischen x, y, die gruppe von transformationen gestatten", Arch. Math. Natur. Christiania., 9 (1883), 371–393.
- L. V. Ovsyannikov, "Group classification of equations of the form y'' = f(x, y)", J. Appl. Mech. Tech. Phys., 45:2 (2004), 153–157.
- L. V. Ovsyannikov, "Group properties of nonlinear heat-conduction equations", Dokl. Akad. Nauk SSSR, 125:3 (1959), 492–495 (In Russ.).
- V. A. Dorodnitsyn, "On invariant solutions of the equation of non-linear heat conduction with a source", U.S.S.R. Comput. Math. Math. Phys., 22:6 (1982), 115–122.
- S. Yu. Lukashchuk, A. V. Makunin, "Group classification of nonlinear time-fractional diffusion equation with a source term", Appl. Math. Comput., 257 (2015), 335–343.
- S. Yu. Lukashchuk, "Symmetry reduction and invariant solutions for nonlinear fractional diffusion equation with a source term", Ufa Math. J., 8:4 (2016), 111–122.
- S. Yu. Lukashchuk, "An approximate group classification of a perturbed subdiffusion equation", J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20:4 (2016), 603–619. doi: 10.14498/vsgtu1520 (In Russ.).
- A. V. Luikov, Analytical Heat Diffusion Theory, Academic Press, New York, 1968, 685 p.
- A. V. Kostanovskiy, M. E. Kostanovskaya, "A criterion of applicability of the parabolic heat conduction equation", Tech. Phys. Lett., 34:6 (2008), 500–502.
- T. Q. Qiu, C. L. Tien, "Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals", J. Heat Transfer., 115:4 (1993), 835–841. doi: 10.1115/1.2911377.
- H. D. Wang, B. Y. Cao, Z. Y. Guo, "Non-Fourier Heat Conduction in Carbon Nanotubes", J. Heat Transfer, 134:5 (2012), 051004.
- W. Roetzel, N. Putra, S. K. Das, "Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure", Int. J. Therm. Sci., 42:6 (2003), 541–552.
- A. I. Zhmakin, "Heat Conduction Beyond the Fourier Law", Tech. Phys., 66:1 (2021), 1–22. doi: 10.21883/JTF.2021.01.50267.207-20.
- C. Cattaneo, "A form of heat equation which eliminates the paradox of instantaneous propagation", Comptes Rendus de l'Academie des Sciences, 247 (1958), 431–433.
- P. Vernotte, "Paradoxes in the continuous theory of the heat equation", Comptes Rendus de l'Academie des Sciences, 246 (1958), 3154–3155.
- D. Y. Tzou, "A unified field approach for heat conduction from macro to micro-scales", ASME J. Heat Transfer., 117 (1995), 8–16. doi: 10.1115/1.2822329.
- H.-Y. Xu, X.-Y. Jiang, "Time fractional dual-phase-lag heat conduction equation", Chin. Phys. B., 24:3 (2015), 034401. doi: 10.1088/1674-1056/24/3/034401.
- H. Sobhani, A. Azimi, A. Noghrehabadi, M. Mozafarifard, "Numerical study and parameters estimation of anomalous diffusion process in porous media based on variable-order time fractional dual-phase-lag model", Numerical Heat Transfer, Part A: Applications, 83:7 (2023), 679–710. doi: 10.1080/10407782.2022.2157915.
- Q. Zhuang, B. Yu, X. Jiang, "An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon–carbon experimental data", Phys. B: Condens. Matter., 456 (2015), 9–15. doi: 10.1016/j.physb.2014.08.011.
- M. H. Fotovvat, Z. Shomali, "A time-fractional dual-phase-lag framework to investigate transistors with TMTC channels (TiS3, In4Se3) and size-dependent properties", Micro and Nanostructures, 168 (2022), 207304. doi: 10.48550/arXiv.2203.06523.
- S. Yu. Lukashchuk, "A semi-explicit algorithm for parameters estimation in a timefractional dual-phase-lag heat conduction model", Modelling, 5:3 (2024), 776–796. doi: 10.3390/modelling5030041.
- A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 p.
- S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, 1993, 976 p.
- I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, "Nonlocal symmetries. Heuristic approach", J. Soviet Math., 55:1 (1991), 1401–1450.
补充文件



