Том 25, № 1 (2023)

Мұқаба

Бүкіл шығарылым

Mathematics

On a class of self-affine sets on the plane given by six homotheties

Bagaev A.

Аннотация

This paper is devoted to a class of self-affine sets on the plane determined by six homotheties. Centers of these homotheties are located at the vertices of a regular hexagon P, and the homothetic coefficients belong to the interval (0, 1). One must note that equality of homothetic coefficients is not assumed. A self-affine set on the plane is a non-empty compact subset that is invariant with respect to the considered family of homotheties. The existence and uniqueness of such a set is provided by Hutchinson’s theorem. The goal of present work is to investigate the influence of homothetic coefficients on the properties of a self-affine set. To describe the set, barycentric coordinates on the plane are introduced. The conditions are found under which the self-affine set is: a) the hexagon P; b) a Cantor set in the hexagon P. The Minkowski and the Hausdorff dimensions of the indicated sets are calculated. The conditions providing vanishing Lebesgue measure of self-affine set are obtained. Examples of self-affine sets from the considered class are presented.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):519-530
pages 519-530 views

Link as a complete invariant of Morse-Smale 3-diffeomorphisms

Nozdrinov A., Pochinka A.

Аннотация

In this paper we consider gradient-like Morse-Smale diffeomorphisms defined on the three-dimensional sphere S3. For such diffeomorphisms, a complete invariant of topological conjugacy was obtained in the works of C. Bonatti, V. Grines, V. Medvedev, E. Pecu. It is an equivalence class of a set of homotopically non-trivially embedded tori and Klein bottles embedded in some closed 3-manifold whose fundamental group admits an epimorphism to the group Z. Such an invariant is called the scheme of the gradient-like diffeomorphism f: S3 → S3. We single out a class G of diffeomorphisms whose complete invariant is a topologically simpler object, namely, the link of essential knots in the manifold S2xS1. The diffeomorphisms under consideration are determined by the fact that their nonwandering set contains a unique source, and the closures of stable saddle point manifolds bound three-dimensional balls with pairwise disjoint interiors. We prove that, in addition to the closure of these balls, a diffeomorphism of the class G contains exactly one nonwandering point, which is a fixed sink. It is established that the total invariant of topological conjugacy of class G diffeomorphisms is the space of orbits of unstable saddle separatrices in the basin of this sink. It is shown that the space of orbits is a link of non-contractible knots in the manifold S2 x S1 and that the equivalence of links is tantamount to the equivalence of schemes. We also provide a realization of diffeomorphisms of the considered class along an arbitrary link consisting of essential nodes in the manifold S2 x S1.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):531-541
pages 531-541 views

Exact Solutions of One Nonlinear Countable-Dimensional System of Integro-Differential Equations

Rassadin A.

Аннотация

In the present paper, a nonlinear countable-dimensional system of integrodifferential equations is investigated, whose vector of unknowns is a countable set of functions of two variables. These variables are interpreted as spatial coordinate and time. The nonlinearity of this system is constructed from two simultaneous convolutions: first convolution is in the sense of functional analysis and the second one is in the sense of linear space of double-sided sequences. The initial condition for this system is a doublesided sequence of functions of one variable defined on the entire real axis. The system itself can be written as a single abstract equation in the linear space of double-sided sequences. As the system may be resolved with respect to the time derivative, it may be presented as a dynamical system. The solution of this abstract equation can be interpreted as an approximation of the solution of a nonlinear integro-differential equation, whose unknown function depends not only on time, but also on two spatial variables. General representation for exact solution of system under study is obtained in the paper. Also two kinds of particular examples of exact solutions are presented. The first demonstrates oscillatory spatio-temporal behavior, and the second one shows monotone in time behavior. In the paper typical graphs of the first components of these solutions are plotted. Moreover, it is demonstrated that using some procedure one can generate countable set of new exact system’s solutions from previously found solutions. From radio engineering point of view this procedure just coincides with procedure of upsampling in digital signal processing.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):542-553
pages 542-553 views

Solution of integral equations of linear antenna theory by finite element method

Tarasov D.

Аннотация

The aim of the work is to construct a computational scheme of the finite element method in relation to integral equations describing current distributions in thin wire antennas. In particular, for linear antennas of small thickness, the problem can be reduced to the integral Gallen equation. As a research method, preference is given to the finite element method, since it has quite a lot of flexibility in terms of choosing basis functions and selecting a grid of nodes. In addition, this method is a powerful and effective means of solving mathematical physics’ problems, which makes it possible to accurately describe complex curved boundaries of the solution domain and boundary conditions. The paper builds a numerical method for solving the integral Gallen equation using the finite element approach. According to the proposed computational scheme, a software implementation was built and a comparative analysis of the results was carried out. This approach as a whole showed low accuracy, which is probably due to the fact that this problem belongs to the class of incorrect ones and, in general, is due to the issue of determining the limits of applicability of the Gallen equation.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):554-564
pages 554-564 views

Methods of numerical analysis for some integral dynamical systems with delay arguments

Tynda A.

Аннотация

The aim of this work is to construct direct and iterative numerical methods for solving functional equations with hereditary components. Such equations are a convenient tool for modeling dynamical systems. In particular, they are used in population models structured by age with a finite life span. Models based on integro-differential and integral equations with various kinds of delay arguments are considered. For nonlinear equations, the operators are linearized according to the modified Newton-Kantorovich scheme. Direct quadrature and simple iteration methods are used to discretize linear equations. These methods are constructed in the paper: an iterative method for solving a nonlinear integro-differential equation on the semiaxis  (-∞,0)(,0]">, a direct method for solving the signal recovery problem, and iterative methods for solving a nonlinear Volterra integral equation with a constant delay. Special quadrature formulas based on orthogonal Lagger polynomials are used to approximate improper integrals on the semiaxis. The results of numerical experiments confirm the convergence of suggested methods. The proposed approaches can also be applied to other classes of nonlinear equations with delays.

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):565-577
pages 565-577 views

Mathematical life

On the 80th anniversary of the birth of Vladislav Sergeevich Medvedev

Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva. 2023;25(1):578-582
pages 578-582 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».